These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37861656)
1. Differences in photoprotective strategy during winter in Eastern white pine and white spruce. Verhoeven A; Kornkven J Tree Physiol; 2024 Feb; 44(1):. PubMed ID: 37861656 [TBL] [Abstract][Full Text] [Related]
2. A comparison of pine and spruce in recovery from winter stress; changes in recovery kinetics, and the abundance and phosphorylation status of photosynthetic proteins during winter. Merry R; Jerrard J; Frebault J; Verhoeven A Tree Physiol; 2017 Sep; 37(9):1239-1250. PubMed ID: 28575482 [TBL] [Abstract][Full Text] [Related]
3. Seasonal changes in abundance and phosphorylation status of photosynthetic proteins in eastern white pine and balsam fir. Verhoeven A; Osmolak A; Morales P; Crow J Tree Physiol; 2009 Mar; 29(3):361-74. PubMed ID: 19203960 [TBL] [Abstract][Full Text] [Related]
4. Acclimation of Norway spruce photosynthetic apparatus to the combined effect of high irradiance and temperature. Stroch M; Vrábl D; Podolinská J; Kalina J; Urban O; Spunda V J Plant Physiol; 2010 May; 167(8):597-605. PubMed ID: 20060196 [TBL] [Abstract][Full Text] [Related]
5. Recovery kinetics of photochemical efficiency in winter stressed conifers: the effects of growth light environment, extent of the season and species. Verhoeven AS Physiol Plant; 2013 Feb; 147(2):147-58. PubMed ID: 22575048 [TBL] [Abstract][Full Text] [Related]
6. Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce ( Grebe S; Trotta A; Bajwa AA; Mancini I; Bag P; Jansson S; Tikkanen M; Aro EM Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17499-17509. PubMed ID: 32690715 [TBL] [Abstract][Full Text] [Related]
7. Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment. Porcar-Castell A; Juurola E; Ensminger I; Berninger F; Hari P; Nikinmaa E Tree Physiol; 2008 Oct; 28(10):1483-91. PubMed ID: 18708330 [TBL] [Abstract][Full Text] [Related]
8. Comparative photosynthetic responses of Norway spruce and Scots pine seedlings to prolonged water deficiency. Zlobin IE; Kartashov AV; Pashkovskiy PP; Ivanov YV; Kreslavski VD; Kuznetsov VV J Photochem Photobiol B; 2019 Dec; 201():111659. PubMed ID: 31698219 [TBL] [Abstract][Full Text] [Related]
9. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring. Fréchette E; Wong CY; Junker LV; Chang CY; Ensminger I J Exp Bot; 2015 Dec; 66(22):7309-23. PubMed ID: 26386258 [TBL] [Abstract][Full Text] [Related]
10. Characterization of light-dependent regulation of state transitions in gymnosperms. Verhoeven AS; Kertho A; Nguyen M Tree Physiol; 2016 Mar; 36(3):325-34. PubMed ID: 26802541 [TBL] [Abstract][Full Text] [Related]
11. Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence. Ivanov AG; Sane PV; Zeinalov Y; Simidjiev I; Huner NP; Oquist G Planta; 2002 Jul; 215(3):457-65. PubMed ID: 12111228 [TBL] [Abstract][Full Text] [Related]
12. Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. Zarter CR; Demmig-Adams B; Ebbert V; Adamska I; Adams WW New Phytol; 2006; 172(2):283-92. PubMed ID: 16995916 [TBL] [Abstract][Full Text] [Related]
13. Spruce versus Arabidopsis: different strategies of photosynthetic acclimation to light intensity change. Štroch M; Karlický V; Ilík P; Ilíková I; Opatíková M; Nosek L; Pospíšil P; Svrčková M; Rác M; Roudnický P; Zdráhal Z; Špunda V; Kouřil R Photosynth Res; 2022 Oct; 154(1):21-40. PubMed ID: 35980499 [TBL] [Abstract][Full Text] [Related]
14. Wide variation of winter-induced sustained thermal energy dissipation in conifers: a common-garden study. Walter-McNeill A; Garcia MA; Logan BA; Bombard DM; Reblin JS; Lopez S; Southwick CD; Sparrow EL; Bowling DR Oecologia; 2021 Nov; 197(3):589-598. PubMed ID: 34570279 [TBL] [Abstract][Full Text] [Related]
15. Photoperiod and temperature constraints on the relationship between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus. Fréchette E; Chang CY; Ensminger I Tree Physiol; 2016 Mar; 36(3):311-24. PubMed ID: 26846980 [TBL] [Abstract][Full Text] [Related]
16. Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Bag P; Chukhutsina V; Zhang Z; Paul S; Ivanov AG; Shutova T; Croce R; Holzwarth AR; Jansson S Nat Commun; 2020 Dec; 11(1):6388. PubMed ID: 33319777 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Ivanov AG; Krol M; Sveshnikov D; Malmberg G; Gardeström P; Hurry V; Oquist G; Huner NP Planta; 2006 May; 223(6):1165-77. PubMed ID: 16333639 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Ivanov AG; Sane PV; Zeinalov Y; Malmberg G; Gardeström P; Huner NP; Oquist G Planta; 2001 Aug; 213(4):575-85. PubMed ID: 11556790 [TBL] [Abstract][Full Text] [Related]
19. Susceptibility to low-temperature photoinhibition in three conifers differing in successional status. Robakowski P Tree Physiol; 2005 Sep; 25(9):1151-60. PubMed ID: 15996958 [TBL] [Abstract][Full Text] [Related]
20. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. Tardy F; Havaux M J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]