These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 37861801)
1. Prognostication of lung adenocarcinomas using CT-based deep learning of morphological and histopathological features: a retrospective dual-institutional study. Lee T; Lee KH; Lee JH; Park S; Kim YT; Goo JM; Kim H Eur Radiol; 2024 May; 34(5):3431-3443. PubMed ID: 37861801 [TBL] [Abstract][Full Text] [Related]
2. Computed Tomography-based Prognostication in Lung Adenocarcinomas through Histopathological Feature Learning: A Retrospective Multicenter Study. Lee KH; Lee JH; Park S; Jeon YK; Chung DH; Kim YT; Goo JM; Kim H Ann Am Thorac Soc; 2023 Jul; 20(7):1020-1028. PubMed ID: 37075305 [No Abstract] [Full Text] [Related]
3. Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas. Kim H; Goo JM; Lee KH; Kim YT; Park CM Radiology; 2020 Jul; 296(1):216-224. PubMed ID: 32396042 [TBL] [Abstract][Full Text] [Related]
4. Diagnostic performance and prognostic value of CT-defined visceral pleural invasion in early-stage lung adenocarcinomas. Lim WH; Lee KH; Lee JH; Park H; Nam JG; Hwang EJ; Chung JH; Goo JM; Park S; Kim YT; Kim H Eur Radiol; 2024 Mar; 34(3):1934-1945. PubMed ID: 37658899 [TBL] [Abstract][Full Text] [Related]
5. Prognostic value of CT-defined ground-glass opacity in early-stage lung adenocarcinomas: a single-center study and meta-analysis. Lee JH; Choi Y; Hong H; Kim YT; Goo JM; Kim H Eur Radiol; 2024 Mar; 34(3):1905-1920. PubMed ID: 37650971 [TBL] [Abstract][Full Text] [Related]
6. Prognostic impact of deep learning-based quantification in clinical stage 0-I lung adenocarcinoma. Zhu Y; Chen LL; Luo YW; Zhang L; Ma HY; Yang HS; Liu BC; Li LJ; Zhang WB; Li XM; Xie CM; Yang JC; Wang DL; Li Q Eur Radiol; 2023 Dec; 33(12):8542-8553. PubMed ID: 37436506 [TBL] [Abstract][Full Text] [Related]
7. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427 [TBL] [Abstract][Full Text] [Related]
8. PET/CT-based deep learning grading signature to optimize surgical decisions for clinical stage I invasive lung adenocarcinoma and biologic basis under its prediction: a multicenter study. Zhong Y; Cai C; Chen T; Gui H; Chen C; Deng J; Yang M; Yu B; Song Y; Wang T; Chen Y; Shi H; Xie D; Chen C; She Y Eur J Nucl Med Mol Imaging; 2024 Jan; 51(2):521-534. PubMed ID: 37725128 [TBL] [Abstract][Full Text] [Related]
9. Computed Tomography Radiomics for Preoperative Prediction of Spread Through Air Spaces in the Early Stage of Surgically Resected Lung Adenocarcinomas. Suh YJ; Han K; Kwon Y; Kim H; Lee S; Hwang SH; Kim MH; Shin HJ; Lee CY; Shim HS Yonsei Med J; 2024 Mar; 65(3):163-173. PubMed ID: 38373836 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model. Ma X; Xia L; Chen J; Wan W; Zhou W Eur Radiol; 2023 Mar; 33(3):1949-1962. PubMed ID: 36169691 [TBL] [Abstract][Full Text] [Related]
11. Histopathologic Basis for a Chest CT Deep Learning Survival Prediction Model in Patients with Lung Adenocarcinoma. Nam JG; Park S; Park CM; Jeon YK; Chung DH; Goo JM; Kim YT; Kim H Radiology; 2022 Nov; 305(2):441-451. PubMed ID: 35787198 [TBL] [Abstract][Full Text] [Related]
12. CT-defined Visceral Pleural Invasion in T1 Lung Adenocarcinoma: Lack of Relationship to Disease-Free Survival. Kim H; Goo JM; Kim YT; Park CM Radiology; 2019 Sep; 292(3):741-749. PubMed ID: 31361207 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based prognostication in idiopathic pulmonary fibrosis using chest radiographs. Lee T; Ahn SY; Kim J; Park JS; Kwon BS; Choi SM; Goo JM; Park CM; Nam JG Eur Radiol; 2024 Jul; 34(7):4206-4217. PubMed ID: 38112764 [TBL] [Abstract][Full Text] [Related]
14. Extended application of a CT-based artificial intelligence prognostication model in patients with primary lung cancer undergoing stereotactic ablative radiotherapy. Kim H; Lee JH; Kim HJ; Park CM; Wu HG; Goo JM Radiother Oncol; 2021 Dec; 165():166-173. PubMed ID: 34748856 [TBL] [Abstract][Full Text] [Related]
15. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116 [TBL] [Abstract][Full Text] [Related]
16. Outcome prediction in resectable lung adenocarcinoma patients: value of CT radiomics. Choe J; Lee SM; Do KH; Kim S; Choi S; Lee JG; Seo JB Eur Radiol; 2020 Sep; 30(9):4952-4963. PubMed ID: 32356158 [TBL] [Abstract][Full Text] [Related]
17. Solid Attenuation Components Attention Deep Learning Model to Predict Micropapillary and Solid Patterns in Lung Adenocarcinomas on Computed Tomography. Chen LW; Yang SM; Chuang CC; Wang HJ; Chen YC; Lin MW; Hsieh MS; Antonoff MB; Chang YC; Wu CC; Pan T; Chen CM Ann Surg Oncol; 2022 Nov; 29(12):7473-7482. PubMed ID: 35789301 [TBL] [Abstract][Full Text] [Related]
18. Clinical Utility of a CT-based AI Prognostic Model for Segmentectomy in Non-Small Cell Lung Cancer. Na KJ; Kim YT; Goo JM; Kim H Radiology; 2024 Apr; 311(1):e231793. PubMed ID: 38625008 [TBL] [Abstract][Full Text] [Related]
19. Development of a novel combined nomogram integrating deep-learning-assisted CT texture and clinical-radiological features to predict the invasiveness of clinical stage IA part-solid lung adenocarcinoma: a multicentre study. Zuo Z; Zeng W; Peng K; Mao Y; Wu Y; Zhou Y; Qi W Clin Radiol; 2023 Oct; 78(10):e698-e706. PubMed ID: 37487842 [TBL] [Abstract][Full Text] [Related]
20. Computed tomography-based 3D convolutional neural network deep learning model for predicting micropapillary or solid growth pattern of invasive lung adenocarcinoma. Huo J; Min X; Luo T; Lv F; Feng Y; Fan Q; Wang D; Ma D; Li Q Radiol Med; 2024 May; 129(5):776-784. PubMed ID: 38512613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]