These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37862656)

  • 1. Quantum Complementarity Approach to Device-Independent Security.
    Zhang X; Zeng P; Ye T; Lo HK; Ma X
    Phys Rev Lett; 2023 Oct; 131(14):140801. PubMed ID: 37862656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unbounded Device-Independent Quantum Key Rates from Arbitrarily Small Nonlocality.
    Farkas M
    Phys Rev Lett; 2024 May; 132(21):210803. PubMed ID: 38856279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantage Distillation for Device-Independent Quantum Key Distribution.
    Tan EY; Lim CC; Renner R
    Phys Rev Lett; 2020 Jan; 124(2):020502. PubMed ID: 32004060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical device-independent quantum cryptography via entropy accumulation.
    Arnon-Friedman R; Dupuis F; Fawzi O; Renner R; Vidick T
    Nat Commun; 2018 Jan; 9(1):459. PubMed ID: 29386507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement-device-independent quantum communication without encryption.
    Niu PH; Zhou ZR; Lin ZS; Sheng YB; Yin LG; Long GL
    Sci Bull (Beijing); 2018 Oct; 63(20):1345-1350. PubMed ID: 36658905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bell Nonlocality Is Not Sufficient for the Security of Standard Device-Independent Quantum Key Distribution Protocols.
    Farkas M; Balanzó-Juandó M; Łukanowski K; Kołodyński J; Acín A
    Phys Rev Lett; 2021 Jul; 127(5):050503. PubMed ID: 34397256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of Multicopy Nonlocality Distillation and Its Application to Minimizing Communication Complexity.
    Eftaxias G; Weilenmann M; Colbeck R
    Phys Rev Lett; 2023 Mar; 130(10):100201. PubMed ID: 36962026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-key analysis for measurement-device-independent quantum key distribution.
    Curty M; Xu F; Cui W; Lim CC; Tamaki K; Lo HK
    Nat Commun; 2014 Apr; 5():3732. PubMed ID: 24776959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing conditional entropies for quantum correlations.
    Brown P; Fawzi H; Fawzi O
    Nat Commun; 2021 Jan; 12(1):575. PubMed ID: 33495446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully device-independent quantum key distribution.
    Vazirani U; Vidick T
    Phys Rev Lett; 2014 Oct; 113(14):140501. PubMed ID: 25325625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Device-independent quantum randomness-enhanced zero-knowledge proof.
    Li CL; Zhang KY; Zhang X; Yang KX; Han Y; Cheng SY; Cui H; Liu WZ; Li MH; Liu Y; Bai B; Dong HH; Zhang J; Ma X; Yu Y; Fan J; Zhang Q; Pan JW
    Proc Natl Acad Sci U S A; 2023 Nov; 120(45):e2205463120. PubMed ID: 37917793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a Photonic Demonstration of Device-Independent Quantum Key Distribution.
    Liu WZ; Zhang YZ; Zhen YZ; Li MH; Liu Y; Fan J; Xu F; Zhang Q; Pan JW
    Phys Rev Lett; 2022 Jul; 129(5):050502. PubMed ID: 35960585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tight finite-key analysis for quantum cryptography.
    Tomamichel M; Lim CC; Gisin N; Renner R
    Nat Commun; 2012 Jan; 3():634. PubMed ID: 22252558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Device-Independent Quantum Key Distribution with Random Postselection.
    Xu F; Zhang YZ; Zhang Q; Pan JW
    Phys Rev Lett; 2022 Mar; 128(11):110506. PubMed ID: 35363036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Security Analysis of Continuous-Variable Measurement-Device-Independent Quantum Key Distribution Systems in Complex Communication Environments.
    Zheng Y; Shi H; Pan W; Wang Q; Mao J
    Entropy (Basel); 2022 Jan; 24(1):. PubMed ID: 35052153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-key bound for semi-device-independent quantum key distribution.
    Zhou C; Xu P; Bao WS; Wang Y; Zhang Y; Jiang MS; Li HW
    Opt Express; 2017 Jul; 25(15):16971-16980. PubMed ID: 28789196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Randomness determines practical security of BB84 quantum key distribution.
    Li HW; Yin ZQ; Wang S; Qian YJ; Chen W; Guo GC; Han ZF
    Sci Rep; 2015 Nov; 5():16200. PubMed ID: 26552359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No signaling and quantum key distribution.
    Barrett J; Hardy L; Kent A
    Phys Rev Lett; 2005 Jul; 95(1):010503. PubMed ID: 16090597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Realization of Device-Independent Quantum Randomness Expansion.
    Li MH; Zhang X; Liu WZ; Zhao SR; Bai B; Liu Y; Zhao Q; Peng Y; Zhang J; Zhang Y; Munro WJ; Ma X; Zhang Q; Fan J; Pan JW
    Phys Rev Lett; 2021 Feb; 126(5):050503. PubMed ID: 33605771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel Device-Independent Quantum Key Distribution.
    Jain R; Miller CA; Shi Y
    IEEE Trans Inf Theory; 2020; 66(9):. PubMed ID: 33654327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.