BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 37862690)

  • 1. Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene.
    Hoffmann C; Murastov G; Tromm JV; Moog JB; Aslam MA; Matkovic A; Milovanovic D
    Nano Lett; 2023 Dec; 23(23):10796-10801. PubMed ID: 37862690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dipping contacts - a novel type of contact site at the interface between membraneless organelles and membranes.
    Hoffmann C; Milovanovic D
    J Cell Sci; 2023 Dec; 136(24):. PubMed ID: 38149872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synapsin Condensates Recruit alpha-Synuclein.
    Hoffmann C; Sansevrino R; Morabito G; Logan C; Vabulas RM; Ulusoy A; Ganzella M; Milovanovic D
    J Mol Biol; 2021 Jun; 433(12):166961. PubMed ID: 33774037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Membraneless Droplets for Synaptic-Like Clustering of Lipid Vesicles.
    Li Q; Song Q; Guo W; Cao Y; Cui X; Chen D; Shum HC
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202313096. PubMed ID: 37728515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates.
    Guo G; Wang X; Zhang Y; Li T
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicle Tethering on the Surface of Phase-Separated Active Zone Condensates.
    Wu X; Ganzella M; Zhou J; Zhu S; Jahn R; Zhang M
    Mol Cell; 2021 Jan; 81(1):13-24.e7. PubMed ID: 33202250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of biomolecular condensates to the autophagy pathway.
    Ma X; Li P; Ge L
    Trends Cell Biol; 2023 Jun; 33(6):505-516. PubMed ID: 36150962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates.
    Ma W; Zhen G; Xie W; Mayr C
    Elife; 2021 Mar; 10():. PubMed ID: 33650968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics.
    Yeong V; Werth EG; Brown LM; Obermeyer AC
    ACS Cent Sci; 2020 Dec; 6(12):2301-2310. PubMed ID: 33376791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.
    Zhao YG; Zhang H
    Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological colloids: Unique properties of membraneless organelles in the cell.
    Bratek-Skicki A; Van Nerom M; Maes D; Tompa P
    Adv Colloid Interface Sci; 2022 Dec; 310():102777. PubMed ID: 36279601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation-dependent membraneless organelle fusion and fission illustrated by postsynaptic density assemblies.
    Wu H; Chen X; Shen Z; Li H; Liang S; Lu Y; Zhang M
    Mol Cell; 2024 Jan; 84(2):309-326.e7. PubMed ID: 38096828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle.
    Wu X; Qiu H; Zhang M
    J Mol Biol; 2023 Jan; 435(1):167629. PubMed ID: 35595170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms for Active Regulation of Biomolecular Condensates.
    Söding J; Zwicker D; Sohrabi-Jahromi S; Boehning M; Kirschbaum J
    Trends Cell Biol; 2020 Jan; 30(1):4-14. PubMed ID: 31753533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting and complex remodeling of membranes by biomolecular condensates.
    Mangiarotti A; Chen N; Zhao Z; Lipowsky R; Dimova R
    Nat Commun; 2023 May; 14(1):2809. PubMed ID: 37217523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function moves biomolecular condensates in phase space.
    Feric M; Misteli T
    Bioessays; 2022 May; 44(5):e2200001. PubMed ID: 35243657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.