These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37862992)
41. Improving the chemical and sensory characteristics of red and white wines with pectinase-producing non-Saccharomyces yeasts. Paup VD; Barton TL; Edwards CG; Lange I; Lange BM; Lee J; Ross CF J Food Sci; 2022 Dec; 87(12):5402-5417. PubMed ID: 36357987 [TBL] [Abstract][Full Text] [Related]
42. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations. Chen D; Liu SQ Food Chem; 2016 Apr; 196():988-95. PubMed ID: 26593581 [TBL] [Abstract][Full Text] [Related]
43. Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety. Gajek M; Pawlaczyk A; Szynkowska-Jozwik MI Molecules; 2021 Jan; 26(1):. PubMed ID: 33406611 [TBL] [Abstract][Full Text] [Related]
44. The relationships between consumer liking, sensory and chemical attributes of Vitis vinifera L. cv. Pinotage wines elaborated with different Oenococcus oeni starter cultures. Malherbe S; Menichelli E; du Toit M; Tredoux A; Muller N; Naes T; Nieuwoudt H J Sci Food Agric; 2013 Aug; 93(11):2829-40. PubMed ID: 23427009 [TBL] [Abstract][Full Text] [Related]
46. The Impact of Fermentation Temperature and Cap Management on Selected Volatile Compounds and Temporal Sensory Characteristics of Grenache Wines from the Central Coast of California. Stoffel ES; Robertson TM; Catania AA; Casassa LF Molecules; 2023 May; 28(10):. PubMed ID: 37241971 [TBL] [Abstract][Full Text] [Related]
47. Impact of accentuated cut edges (ACE) technique on volatile and sensory profiles of Shiraz wines. Wang X; Capone DL; Kang W; Roland A; Jeffery DW Food Chem; 2022 Mar; 372():131222. PubMed ID: 34638059 [TBL] [Abstract][Full Text] [Related]
48. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Hranilovic A; Albertin W; Capone DL; Gallo A; Grbin PR; Danner L; Bastian SEP; Masneuf-Pomarede I; Coulon J; Bely M; Jiranek V Food Chem; 2021 Jul; 349():129015. PubMed ID: 33545601 [TBL] [Abstract][Full Text] [Related]
49. Screening of key odorants and anthocyanin compounds of cv. Okuzgozu (Vitis vinifera L.) red wines with a free run and pressed pomace using GC-MS-Olfactometry and LC-MS-MS. Tetik MA; Sevindik O; Kelebek H; Selli S J Mass Spectrom; 2018 May; 53(5):444-454. PubMed ID: 29469168 [TBL] [Abstract][Full Text] [Related]
50. Anthocyanins profile of grape berries of Vitis amurensis, its hybrids and their wines. Zhao Q; Duan CQ; Wang J Int J Mol Sci; 2010 May; 11(5):2212-28. PubMed ID: 20559511 [TBL] [Abstract][Full Text] [Related]
51. Effect of Deacidification Treatment on the Flavor Quality of Zaosu Pear-Kiwifruit Wine. Yang X; Song X; Yang L; Zhao J; Zhu X Foods; 2022 Jul; 11(14):. PubMed ID: 35885250 [TBL] [Abstract][Full Text] [Related]
52. Leaf removal and wine composition of Vitis vinifera L. cv. Nero d'Avola: the volatile aroma constituents. Verzera A; Tripodi G; Dima G; Condurso C; Scacco A; Cincotta F; Giglio DM; Santangelo T; Sparacio A J Sci Food Agric; 2016 Jan; 96(1):150-9. PubMed ID: 25581439 [TBL] [Abstract][Full Text] [Related]
53. Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation. Zhao H; Li Y; Liu L; Zheng M; Feng Z; Hu K; Tao Y Food Res Int; 2022 Sep; 159():111604. PubMed ID: 35940798 [TBL] [Abstract][Full Text] [Related]
54. Metabolomic characterization of malolactic fermentation and fermentative behaviors of wine yeasts in grape wine. Son HS; Hwang GS; Park WM; Hong YS; Lee CH J Agric Food Chem; 2009 Jun; 57(11):4801-9. PubMed ID: 19441817 [TBL] [Abstract][Full Text] [Related]
55. Yeast strain affects phenolic concentration in Pinot noir wines made by microwave maceration with early pressing. Carew AL; Close DC; Dambergs RG J Appl Microbiol; 2015 Jun; 118(6):1385-94. PubMed ID: 25728037 [TBL] [Abstract][Full Text] [Related]
56. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Berbegal C; Peña N; Russo P; Grieco F; Pardo I; Ferrer S; Spano G; Capozzi V Food Microbiol; 2016 Aug; 57():187-94. PubMed ID: 27052718 [TBL] [Abstract][Full Text] [Related]
57. Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris. Zhang S; Petersen MA; Liu J; Toldam-Andersen TB Molecules; 2015 Dec; 20(12):21609-25. PubMed ID: 26633351 [TBL] [Abstract][Full Text] [Related]
58. Chemical and sensory features of Torrontés Riojano sparkling wines produced by second fermentation in bottle using different Raymond Eder ML; Fariña L; Dellacassa E; Carrau F; Rosa AL Food Sci Technol Int; 2020 Sep; 26(6):512-519. PubMed ID: 32151167 [TBL] [Abstract][Full Text] [Related]
59. Pulsed electric field processing of white grapes (cv. Garganega): Effects on wine composition and volatile compounds. Comuzzo P; Marconi M; Zanella G; Querzè M Food Chem; 2018 Oct; 264():16-23. PubMed ID: 29853361 [TBL] [Abstract][Full Text] [Related]
60. Effect of vine foliar treatments on the varietal aroma of Monastrell wines. Pardo-García AI; de la Hoz KS; Zalacain A; Alonso GL; Salinas MR Food Chem; 2014 Nov; 163():258-66. PubMed ID: 24912724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]