These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37863341)
1. Hotspot mutations and genomic expansion of ERG11 are major mechanisms of azole resistance in environmental and human commensal isolates of Candida tropicalis. Hu T; Wang S; Bing J; Zheng Q; Du H; Li C; Guan Z; Bai FY; Nobile CJ; Chu H; Huang G Int J Antimicrob Agents; 2023 Dec; 62(6):107010. PubMed ID: 37863341 [TBL] [Abstract][Full Text] [Related]
2. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Castanheira M; Deshpande LM; Messer SA; Rhomberg PR; Pfaller MA Int J Antimicrob Agents; 2020 Jan; 55(1):105799. PubMed ID: 31520783 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Fan X; Xiao M; Zhang D; Huang JJ; Wang H; Hou X; Zhang L; Kong F; Chen SC; Tong ZH; Xu YC Clin Microbiol Infect; 2019 Jul; 25(7):885-891. PubMed ID: 30472420 [TBL] [Abstract][Full Text] [Related]
4. MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates. Jin L; Cao Z; Wang Q; Wang Y; Wang X; Chen H; Wang H BMC Infect Dis; 2018 Apr; 18(1):162. PubMed ID: 29631565 [TBL] [Abstract][Full Text] [Related]
5. Analysis of CDR1 and MDR1 Gene Expression and ERG11 Substitutions in Clinical Candida tropicalis Isolates from Alexandria, Egypt. El-Kholy MA; Helaly GF; El Ghazzawi EF; El-Sawaf G; Shawky SM Braz J Microbiol; 2023 Dec; 54(4):2609-2615. PubMed ID: 37606863 [TBL] [Abstract][Full Text] [Related]
6. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression. Wang D; An N; Yang Y; Yang X; Fan Y; Feng J Antimicrob Resist Infect Control; 2021 Mar; 10(1):54. PubMed ID: 33722286 [TBL] [Abstract][Full Text] [Related]
7. Genetic relatedness among azole-resistant Candida tropicalis clinical strains in Taiwan from 2014 to 2018. Zhou ZL; Tseng KY; Chen YZ; Tsai DJ; Wu CJ; Chen YC; Peng HL; Yang YL; Hsieh LY; Chen CH; Hsu CH; Wang LS; Cheng MF; Hsu GJ; Kao CC; Hu BS; Lee YT; Liu JW; Liu KS; Miu WC; Yang HM; Yeh YC; Lo HJ Int J Antimicrob Agents; 2022 Jun; 59(6):106592. PubMed ID: 35460852 [TBL] [Abstract][Full Text] [Related]
9. Reduced Susceptibility to Azoles in Cryptococcus gattii Correlates with the Substitution R258L in a Substrate Recognition Site of the Lanosterol 14-α-Demethylase. Carvajal SK; Melendres J; Escandón P; Firacative C Microbiol Spectr; 2023 Aug; 11(4):e0140323. PubMed ID: 37341584 [TBL] [Abstract][Full Text] [Related]
10. Rapid detection of ERG11 polymorphism associated azole resistance in Candida tropicalis. Paul S; Dadwal R; Singh S; Shaw D; Chakrabarti A; Rudramurthy SM; Ghosh AK PLoS One; 2021; 16(1):e0245160. PubMed ID: 33439909 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Eddouzi J; Parker JE; Vale-Silva LA; Coste A; Ischer F; Kelly S; Manai M; Sanglard D Antimicrob Agents Chemother; 2013 Jul; 57(7):3182-93. PubMed ID: 23629718 [TBL] [Abstract][Full Text] [Related]
12. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Sanglard D; Coste AT Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. Jiang C; Dong D; Yu B; Cai G; Wang X; Ji Y; Peng Y J Antimicrob Chemother; 2013 Apr; 68(4):778-85. PubMed ID: 23221625 [TBL] [Abstract][Full Text] [Related]
15. Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment. Jensen RH Dan Med J; 2016 Oct; 63(10):. PubMed ID: 27697142 [TBL] [Abstract][Full Text] [Related]
16. Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates. Choi MJ; Won EJ; Shin JH; Kim SH; Lee WG; Kim MN; Lee K; Shin MG; Suh SP; Ryang DW; Im YJ Antimicrob Agents Chemother; 2016 Jun; 60(6):3653-61. PubMed ID: 27044550 [TBL] [Abstract][Full Text] [Related]
17. Pan-azole-resistant Candida tropicalis carrying homozygous erg11 mutations at position K143R: a new emerging superbug? Xisto MI; Caramalho RD; Rocha DA; Ferreira-Pereira A; Sartori B; Barreto-Bergter E; Junqueira ML; Lass-Flörl C; Lackner M J Antimicrob Chemother; 2017 Apr; 72(4):988-992. PubMed ID: 28065893 [TBL] [Abstract][Full Text] [Related]
18. Emergence and circulation of azole-resistant Ceballos-Garzon A; Peñuela A; Valderrama-Beltrán S; Vargas-Casanova Y; Ariza B; Parra-Giraldo CM Front Cell Infect Microbiol; 2023; 13():1136217. PubMed ID: 37026059 [TBL] [Abstract][Full Text] [Related]
19. Virulence Factors and Azole-Resistant Mechanism of Candida Tropicalis Isolated from Candidemia. Sasani E; Yadegari MH; Khodavaisy S; Rezaie S; Salehi M; Getso MI Mycopathologia; 2021 Dec; 186(6):847-856. PubMed ID: 34410566 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Sanguinetti M; Posteraro B; Fiori B; Ranno S; Torelli R; Fadda G Antimicrob Agents Chemother; 2005 Feb; 49(2):668-79. PubMed ID: 15673750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]