BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 37863385)

  • 1. A Review of Machine Learning and Algorithmic Methods for Protein Phosphorylation Site Prediction.
    Esmaili F; Pourmirzaei M; Ramazi S; Shojaeilangari S; Yavari E
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1266-1285. PubMed ID: 37863385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based approaches for ubiquitination site prediction in human proteins.
    Pourmirzaei M; Ramazi S; Esmaili F; Shojaeilangari S; Allahvardi A
    BMC Bioinformatics; 2023 Nov; 24(1):449. PubMed ID: 38017391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systematic Review on Posttranslational Modification in Proteins: Feature Construction, Algorithm and Webserver.
    Xu Y; Yang Y; Wang Z; Li C; Shao Y
    Protein Pept Lett; 2018; 25(9):807-814. PubMed ID: 30255739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network.
    Khalili E; Ramazi S; Ghanati F; Kouchaki S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive review of the imbalance classification of protein post-translational modifications.
    Dou L; Yang F; Xu L; Zou Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices.
    Tatjewski M; Kierczak M; Plewczynski D
    Methods Mol Biol; 2017; 1484():275-300. PubMed ID: 27787833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research progress in protein posttranslational modification site prediction.
    He W; Wei L; Zou Q
    Brief Funct Genomics; 2018 Jul; 18(4):220-229. PubMed ID: 30576418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications.
    Li Z; Li S; Luo M; Jhong JH; Li W; Yao L; Pang Y; Wang Z; Wang R; Ma R; Yu J; Huang Y; Zhu X; Cheng Q; Feng H; Zhang J; Wang C; Hsu JB; Chang WC; Wei FX; Huang HD; Lee TY
    Nucleic Acids Res; 2022 Jan; 50(D1):D471-D479. PubMed ID: 34788852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications.
    Lu CT; Huang KY; Su MG; Lee TY; BretaƱa NA; Chang WC; Chen YJ; Chen YJ; Huang HD
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D295-305. PubMed ID: 23193290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction.
    Pakhrin SC; Pokharel S; Saigo H; Kc DB
    Methods Mol Biol; 2022; 2499():285-322. PubMed ID: 35696087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins.
    Huang KY; Su MG; Kao HJ; Hsieh YC; Jhong JH; Cheng KH; Huang HD; Lee TY
    Nucleic Acids Res; 2016 Jan; 44(D1):D435-46. PubMed ID: 26578568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational refinement of post-translational modifications predicted from tandem mass spectrometry.
    Chung C; Liu J; Emili A; Frey BJ
    Bioinformatics; 2011 Mar; 27(6):797-806. PubMed ID: 21258065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications.
    Huang KY; Lee TY; Kao HJ; Ma CT; Lee CC; Lin TH; Chang WC; Huang HD
    Nucleic Acids Res; 2019 Jan; 47(D1):D298-D308. PubMed ID: 30418626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current status of PTMs structural databases: applications, limitations and prospects.
    de Brevern AG; Rebehmed J
    Amino Acids; 2022 Apr; 54(4):575-590. PubMed ID: 35020020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A machine learning strategy for predicting localization of post-translational modification sites in protein-protein interacting regions.
    Saethang T; Payne DM; Avihingsanon Y; Pisitkun T
    BMC Bioinformatics; 2016 Aug; 17(1):307. PubMed ID: 27534850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Development of Machine Learning Methods in Sumoylation Sites Prediction.
    Zhao YW; Zhang S; Ding H
    Curr Med Chem; 2022; 29(5):894-907. PubMed ID: 34525906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DF-Phos: Prediction of Protein Phosphorylation Sites by Deep Forest.
    Zahiri Z; Mehrshad N; Mehrshad M
    J Biochem; 2024 Mar; 175(4):447-456. PubMed ID: 38153271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.