These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37863823)

  • 21. Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions.
    Velev JP; Duan CG; Belashchenko KD; Jaswal SS; Tsymbal EY
    Phys Rev Lett; 2007 Mar; 98(13):137201. PubMed ID: 17501233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Nonvolatile State Resistive Switching Arising from Ferroelectricity and Oxygen Vacancy Migration.
    Lü W; Li C; Zheng L; Xiao J; Lin W; Li Q; Wang XR; Huang Z; Zeng S; Han K; Zhou W; Zeng K; Chen J; Ariando ; Cao W; Venkatesan T
    Adv Mater; 2017 Jun; 29(24):. PubMed ID: 28439926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The tunneling electroresistance effect in a van der Waals ferroelectric tunnel junction based on a graphene/In
    Liu YZ; Dai JQ; Yuan J; Zhao MW
    Phys Chem Chem Phys; 2023 Dec; 25(48):33130-33140. PubMed ID: 38047441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferroelectric synaptic devices based on CMOS-compatible HfAlO
    Kim D; Kim J; Yun S; Lee J; Seo E; Kim S
    Nanoscale; 2023 May; 15(18):8366-8376. PubMed ID: 37092534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrathin BaTiO₃-based ferroelectric tunnel junctions through interface engineering.
    Li C; Huang L; Li T; Lü W; Qiu X; Huang Z; Liu Z; Zeng S; Guo R; Zhao Y; Zeng K; Coey M; Chen J; Ariando ; Venkatesan T
    Nano Lett; 2015 Apr; 15(4):2568-73. PubMed ID: 25800535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diverse polarization bi-stability in ferroelectric tunnel junctions due to the effects of the electrode and strain: an ab initio study.
    Jiang GL; Chen WJ; Wang B; Shao J; Zheng Y
    Phys Chem Chem Phys; 2017 Aug; 19(30):20147-20159. PubMed ID: 28726893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Realizing giant tunneling electroresistance in two-dimensional graphene/BiP ferroelectric tunnel junction.
    Kang L; Jiang P; Cao N; Hao H; Zheng X; Zhang L; Zeng Z
    Nanoscale; 2019 Sep; 11(36):16837-16843. PubMed ID: 31478542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spin-Filtering Ferroelectric Tunnel Junctions as Multiferroic Synapses for Neuromorphic Computing.
    Yang Y; Xi Z; Dong Y; Zheng C; Hu H; Li X; Jiang Z; Lu WC; Wu D; Wen Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56300-56309. PubMed ID: 33287535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Giant tunnelling electroresistance through 2D sliding ferroelectric materials.
    Yang J; Zhou J; Lu J; Luo Z; Yang J; Shen L
    Mater Horiz; 2022 May; 9(5):1422-1430. PubMed ID: 35343989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions.
    Jin Hu W; Wang Z; Yu W; Wu T
    Nat Commun; 2016 Feb; 7():10808. PubMed ID: 26924259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High tunneling electroresistance in ferroelectric tunnel junctions based on two-dimensional α-In
    Lei L; Zhou YH; Zheng X; Wan W; Wang W
    Phys Chem Chem Phys; 2024 Jan; 26(4):3253-3262. PubMed ID: 38196390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A perspective on the physical scaling down of hafnia-based ferroelectrics.
    Park JY; Lee DH; Park GH; Lee J; Lee Y; Park MH
    Nanotechnology; 2023 Feb; 34(20):. PubMed ID: 36745914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ferroelectric and interface films on the tunneling electroresistance of the Al
    Shekhawat A; Hsain HA; Lee Y; Jones JL; Moghaddam S
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34407525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive and accurate analysis of the working principle in ferroelectric tunnel junctions using low-frequency noise spectroscopy.
    Shin W; Min KK; Bae JH; Yim J; Kwon D; Kim Y; Yu J; Hwang J; Park BG; Kwon D; Lee JH
    Nanoscale; 2022 Feb; 14(6):2177-2185. PubMed ID: 34989737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-Dimensional Antiferroelectric Tunnel Junction.
    Ding J; Shao DF; Li M; Wen LW; Tsymbal EY
    Phys Rev Lett; 2021 Feb; 126(5):057601. PubMed ID: 33605764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroresistance effect in ferroelectric tunnel junctions with symmetric electrodes.
    Bilc DI; Novaes FD; Iñiguez J; Ordejón P; Ghosez P
    ACS Nano; 2012 Feb; 6(2):1473-8. PubMed ID: 22229393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible Memristors Based on Single-Crystalline Ferroelectric Tunnel Junctions.
    Luo ZD; Peters JJP; Sanchez AM; Alexe M
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23313-23319. PubMed ID: 31181153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunnel electroresistance effect in a two-dimensional organic ferroelectric tunnel junction.
    Han H; Zhang X; Kang L; Zheng X; Zhao G
    Phys Chem Chem Phys; 2023 Jul; 25(27):18400-18405. PubMed ID: 37401410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorite-structure antiferroelectrics.
    Park MH; Hwang CS
    Rep Prog Phys; 2019 Dec; 82(12):124502. PubMed ID: 31574497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of Resistance Change Memory Characteristics in Ferroelectric and Antiferroelectric (like) Parallel Structures.
    Kho W; Hwang H; Kim J; Park G; Ahn SE
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.