BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37864006)

  • 1. Optimizing the precision of laser speckle contrast imaging.
    González Olmos A; Zilpelwar S; Sunil S; Boas DA; Postnov DD
    Sci Rep; 2023 Oct; 13(1):17970. PubMed ID: 37864006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of laser speckle contrast imaging with laser Doppler perfusion imaging for tissue perfusion measurement.
    Guven G; Dijkstra A; Kuijper TM; Trommel N; van Baar ME; Topeli A; Ince C; van der Vlies CH
    Microcirculation; 2023 Jan; 30(1):e12795. PubMed ID: 36524297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2023 Mar; 28(3):036007. PubMed ID: 36950019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of motion artifacts caused by translation in handheld laser speckle contrast imaging.
    Chizari A; Tsong W; Knop T; Steenbergen W
    J Biomed Opt; 2023 Apr; 28(4):046005. PubMed ID: 37082096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser Speckle Contrast Imaging in Neurosurgery: A Systematic Review.
    Konovalov A; Gadzhiagaev V; Grebenev F; Stavtsev D; Piavchenko G; Gerasimenko A; Telyshev D; Meglinski I; Eliava S
    World Neurosurg; 2023 Mar; 171():35-40. PubMed ID: 36526222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of high-resolution laser speckle contrast imaging to assess cutaneous microcirculation for wound healing monitoring in mice.
    Couturier A; Bouvet R; Cracowski JL; Roustit M
    Microvasc Res; 2022 May; 141():104319. PubMed ID: 35065086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide dynamic range measurement of blood flow
    Liu HL; Yuan Y; Han L; Bi Y; Yu WY; Yu Y
    J Biomed Opt; 2024 Jan; 29(1):016009. PubMed ID: 38283936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using pressure-driven flow systems to evaluate laser speckle contrast imaging.
    Sullender CT; Santorelli A; Richards LM; Mannava PK; Smith C; Dunn AK
    J Biomed Opt; 2023 Mar; 28(3):036003. PubMed ID: 36915371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry.
    Fredriksson I; Hultman M; Strömberg T; Larsson M
    J Biomed Opt; 2019 Jan; 24(1):1-11. PubMed ID: 30675771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Preclinical Laser Speckle Contrast Imaging Instrument for Assessing Systemic and Retinal Vascular Function in Small Rodents.
    Patel DD; Dhalla AH; Viehland C; Connor TB; Lipinski DM
    Transl Vis Sci Technol; 2021 Aug; 10(9):19. PubMed ID: 34403474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of vulvar blood perfusion in women with provoked vestibulodynia using laser Doppler perfusion imaging and laser speckle imaging.
    Cyr MP; Pinard A; Dubois O; Morin M
    Microvasc Res; 2019 Jan; 121():1-6. PubMed ID: 30121222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time video-rate perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33191685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time, multi-spectral motion artefact correction and compensation for laser speckle contrast imaging.
    Heeman W; Maassen H; Dijkstra K; Calon J; van Goor H; Leuvenink H; van Dam GM; Boerma EC
    Sci Rep; 2022 Dec; 12(1):21718. PubMed ID: 36522524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
    Fredriksson I; Larsson M
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29019179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time laser speckle contrast imaging measurement during normothermic machine perfusion in pretransplant kidney assessment.
    Fang Y; van Ooijen L; Ambagtsheer G; Nikolaev AV; Clahsen-van Groningen MC; Dankelman J; de Bruin RWF; Minnee RC
    Lasers Surg Med; 2023 Oct; 55(8):784-793. PubMed ID: 37555246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement correction method for laser speckle contrast imaging of cerebral blood flow in cranial windows in rodents.
    Guilbert J; Desjardins M
    J Biophotonics; 2022 Jan; 15(1):e202100218. PubMed ID: 34658168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging.
    Zötterman J; Bergkvist M; Iredahl F; Tesselaar E; Farnebo S
    J Plast Reconstr Aesthet Surg; 2016 Jul; 69(7):936-43. PubMed ID: 27026039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser speckle contrast imaging and laser Doppler flowmetry reproducibly assess reflex cutaneous vasoconstriction.
    Schwartz KS; Theis EN; Bunting K; McCaughey RA; Lang JA
    Microvasc Res; 2022 Jul; 142():104363. PubMed ID: 35358501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time visualization of renal microperfusion using laser speckle contrast imaging.
    Heeman W; Maassen H; Calon J; van Goor H; Leuvenink H; van Dam GM; Boerma EC
    J Biomed Opt; 2021 May; 26(5):. PubMed ID: 34024055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery.
    Wang Q; Wang Q; Ning Z; Chan KF; Jiang J; Wang Y; Su L; Jiang S; Wang B; Ip BYM; Ko H; Leung TWH; Chiu PWY; Yu SCH; Zhang L
    Sci Robot; 2024 Feb; 9(87):eadh1978. PubMed ID: 38381838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.