These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data. Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175 [TBL] [Abstract][Full Text] [Related]
5. NNICE: a deep quantile neural network algorithm for expression deconvolution. Jin YW; Hu P; Liu Q Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415 [TBL] [Abstract][Full Text] [Related]
6. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets. Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055 [TBL] [Abstract][Full Text] [Related]
7. Dataset including whole blood gene expression profiles and matched leukocyte counts with utility for benchmarking cellular deconvolution pipelines. O'Connell GC BMC Genom Data; 2024 May; 25(1):45. PubMed ID: 38714942 [TBL] [Abstract][Full Text] [Related]
8. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes. Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411 [TBL] [Abstract][Full Text] [Related]
9. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD). Chiu YJ; Ni CE; Huang YH BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883 [TBL] [Abstract][Full Text] [Related]
10. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology. Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342 [TBL] [Abstract][Full Text] [Related]
11. Deconvolving the contributions of cell-type heterogeneity on cortical gene expression. Patrick E; Taga M; Ergun A; Ng B; Casazza W; Cimpean M; Yung C; Schneider JA; Bennett DA; Gaiteri C; De Jager PL; Bradshaw EM; Mostafavi S PLoS Comput Biol; 2020 Aug; 16(8):e1008120. PubMed ID: 32804935 [TBL] [Abstract][Full Text] [Related]
12. A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles. Wang L; Sebra RP; Sfakianos JP; Allette K; Wang W; Yoo S; Bhardwaj N; Schadt EE; Yao X; Galsky MD; Zhu J Genome Med; 2020 Feb; 12(1):24. PubMed ID: 32111252 [TBL] [Abstract][Full Text] [Related]
13. Computational deconvolution of transcriptomics data from mixed cell populations. Avila Cobos F; Vandesompele J; Mestdagh P; De Preter K Bioinformatics; 2018 Jun; 34(11):1969-1979. PubMed ID: 29351586 [TBL] [Abstract][Full Text] [Related]
14. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data. Kang K; Meng Q; Shats I; Umbach DM; Li M; Li Y; Li X; Li L PLoS Comput Biol; 2019 Dec; 15(12):e1007510. PubMed ID: 31790389 [TBL] [Abstract][Full Text] [Related]
15. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition. Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800 [TBL] [Abstract][Full Text] [Related]
16. New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution. Nishikawa T; Lee M; Amau M Sci Rep; 2024 Feb; 14(1):4156. PubMed ID: 38378978 [TBL] [Abstract][Full Text] [Related]
17. Benchmark of cellular deconvolution methods using a multi-assay reference dataset from postmortem human prefrontal cortex. Huuki-Myers LA; Montgomery KD; Kwon SH; Cinquemani S; Eagles NJ; Gonzalez-Padilla D; Maden SK; Kleinman JE; Hyde TM; Hicks SC; Maynard KR; Collado-Torres L bioRxiv; 2024 Apr; ():. PubMed ID: 38405805 [TBL] [Abstract][Full Text] [Related]
18. Next-generation deconvolution of transcriptomic data to investigate the tumor microenvironment. Merotto L; Zopoglou M; Zackl C; Finotello F Int Rev Cell Mol Biol; 2024; 382():103-143. PubMed ID: 38225101 [TBL] [Abstract][Full Text] [Related]
19. A mixture model for expression deconvolution from RNA-seq in heterogeneous tissues. Li Y; Xie X BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S11. PubMed ID: 23735186 [TBL] [Abstract][Full Text] [Related]
20. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Charytonowicz D; Brody R; Sebra R Nat Commun; 2023 Mar; 14(1):1350. PubMed ID: 36906603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]