These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 37864467)
1. Construct Validity of the Gait Deviation Index for People With Incomplete Spinal Cord Injury (GDI-SCI). Sinovas-Alonso I; Herrera-Valenzuela D; de-Los-Reyes-Guzmán A; Cano-de-la-Cuerda R; Del-Ama AJ; Gil-Agudo Á Neurorehabil Neural Repair; 2023 Oct; 37(10):705-715. PubMed ID: 37864467 [TBL] [Abstract][Full Text] [Related]
2. Application of the Gait Deviation Index to Study Gait Impairment in Adult Population With Spinal Cord Injury: Comparison With the Walking Index for Spinal Cord Injury Levels. Sinovas-Alonso I; Herrera-Valenzuela D; Cano-de-la-Cuerda R; Reyes-Guzmán AL; Del-Ama AJ; Gil-Agudo Á Front Hum Neurosci; 2022; 16():826333. PubMed ID: 35444522 [TBL] [Abstract][Full Text] [Related]
3. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613 [TBL] [Abstract][Full Text] [Related]
4. The reproducibility and convergent validity of the walking index for spinal cord injury (WISCI) in chronic spinal cord injury. Burns AS; Delparte JJ; Patrick M; Marino RJ; Ditunno JF Neurorehabil Neural Repair; 2011 Feb; 25(2):149-57. PubMed ID: 21239706 [TBL] [Abstract][Full Text] [Related]
5. Derivation of the Gait Deviation Index for Spinal Cord Injury. Herrera-Valenzuela D; Sinovas-Alonso I; Moreno JC; Gil-Agudo Á; Del-Ama AJ Front Bioeng Biotechnol; 2022; 10():874074. PubMed ID: 35875486 [TBL] [Abstract][Full Text] [Related]
6. Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury. Ma TT; Zhang Q; Zhou TT; Zhang YQ; He Y; Li SJ; Liu QJ NeuroRehabilitation; 2022; 51(3):499-508. PubMed ID: 35964210 [TBL] [Abstract][Full Text] [Related]
7. Validity of the walking scale for spinal cord injury and other domains of function in a multicenter clinical trial. Ditunno JF; Barbeau H; Dobkin BH; Elashoff R; Harkema S; Marino RJ; Hauck WW; Apple D; Basso DM; Behrman A; Deforge D; Fugate L; Saulino M; Scott M; Chung J; Neurorehabil Neural Repair; 2007; 21(6):539-50. PubMed ID: 17507642 [TBL] [Abstract][Full Text] [Related]
8. Reliability and Validity of the Functional Gait Assessment in Incomplete Spinal Cord Injury. Kahn JH; Ohlendorf A; Olsen A; Gordon KE Top Spinal Cord Inj Rehabil; 2020; 26(4):268-274. PubMed ID: 33536732 [TBL] [Abstract][Full Text] [Related]
9. Spinal cord injury functional ambulation profile: a new measure of walking ability. Musselman K; Brunton K; Lam T; Yang J Neurorehabil Neural Repair; 2011; 25(3):285-93. PubMed ID: 21357530 [TBL] [Abstract][Full Text] [Related]
10. Validation of the instrumented evaluation of spatio-temporal gait parameters in patients with motor incomplete spinal cord injury. Pérez-Sanpablo AI; Quinzaños-Fresnedo J; Loera-Cruz R; Quiñones-Uriostegui I; Rodriguez-Reyes G; Pérez-Zavala R Spinal Cord; 2017 Jul; 55(7):699-704. PubMed ID: 28244503 [TBL] [Abstract][Full Text] [Related]
12. Effects of end-effector robot-assisted gait training on gait ability, muscle strength, and balance in patients with spinal cord injury. Shin JC; Jeon HR; Kim D; Min WK; Lee JS; Cho SI; Oh DS; Yoo J NeuroRehabilitation; 2023; 53(3):335-346. PubMed ID: 37638457 [TBL] [Abstract][Full Text] [Related]
13. Pilot study of reliability and validity of the Walking Index for Spinal Cord Injury II (WISCI-II) in children and adolescents with spinal cord injury. Calhoun CL; Mulcahey MJ J Pediatr Rehabil Med; 2012; 5(4):275-9. PubMed ID: 23411768 [TBL] [Abstract][Full Text] [Related]
14. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677 [TBL] [Abstract][Full Text] [Related]
15. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847 [TBL] [Abstract][Full Text] [Related]
16. Standardized assessment of walking capacity after spinal cord injury: the European network approach. van Hedel HJ; Wirz M; Dietz V Neurol Res; 2008 Feb; 30(1):61-73. PubMed ID: 17767814 [TBL] [Abstract][Full Text] [Related]
17. Muscle force and gait performance: relationships after spinal cord injury. Wirz M; van Hedel HJ; Rupp R; Curt A; Dietz V Arch Phys Med Rehabil; 2006 Sep; 87(9):1218-22. PubMed ID: 16935058 [TBL] [Abstract][Full Text] [Related]
18. Outcome measures for gait and ambulation in the spinal cord injury population. Jackson AB; Carnel CT; Ditunno JF; Read MS; Boninger ML; Schmeler MR; Williams SR; Donovan WH; J Spinal Cord Med; 2008; 31(5):487-99. PubMed ID: 19086706 [TBL] [Abstract][Full Text] [Related]
19. Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach. Naro A; Billeri L; Balletta T; Lauria P; Onesta MP; Calabrò RS Brain Sci; 2022 Jan; 12(1):. PubMed ID: 35053862 [TBL] [Abstract][Full Text] [Related]
20. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury. Barthélemy D; Willerslev-Olsen M; Lundell H; Biering-Sørensen F; Nielsen JB Prog Brain Res; 2015; 218():79-101. PubMed ID: 25890133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]