BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37864726)

  • 1. Fibroblast growth factor inhibition by molecular-targeted agents mitigates immunosuppressive tissue microenvironment in hepatocellular carcinoma.
    Suzuki H; Iwamoto H; Tanaka T; Sakaue T; Imamura Y; Masuda A; Nakamura T; Koga H; Hoshida Y; Kawaguchi T
    Hepatol Int; 2024 Apr; 18(2):610-622. PubMed ID: 37864726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chidamide plus Tyrosine Kinase Inhibitor Remodel the Tumor Immune Microenvironment and Reduce Tumor Progression When Combined with Immune Checkpoint Inhibitor in Naïve and Anti-PD-1 Resistant CT26-Bearing Mice.
    Chen JS; Hsieh YC; Chou CH; Wu YH; Yang MH; Chu SH; Chao YS; Chen CN
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of FGFR Reactivates IFNγ Signaling in Tumor Cells to Enhance the Combined Antitumor Activity of Lenvatinib with Anti-PD-1 Antibodies.
    Adachi Y; Kamiyama H; Ichikawa K; Fukushima S; Ozawa Y; Yamaguchi S; Goda S; Kimura T; Kodama K; Matsuki M; Miyano SW; Yokoi A; Kato Y; Funahashi Y
    Cancer Res; 2022 Jan; 82(2):292-306. PubMed ID: 34753772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model.
    Kimura T; Kato Y; Ozawa Y; Kodama K; Ito J; Ichikawa K; Yamada K; Hori Y; Tabata K; Takase K; Matsui J; Funahashi Y; Nomoto K
    Cancer Sci; 2018 Dec; 109(12):3993-4002. PubMed ID: 30447042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Inhibition Elicits Antitumor Immunity and Enhances Programmed Cell Death-1 Checkpoint Blockade in Hepatocellular Carcinoma.
    Deng H; Kan A; Lyu N; Mu L; Han Y; Liu L; Zhang Y; Duan Y; Liao S; Li S; Xie Q; Gao T; Li Y; Zhang Z; Zhao M
    Liver Cancer; 2020 Jun; 9(3):338-357. PubMed ID: 32647635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models.
    Matsuki M; Hoshi T; Yamamoto Y; Ikemori-Kawada M; Minoshima Y; Funahashi Y; Matsui J
    Cancer Med; 2018 Jun; 7(6):2641-2653. PubMed ID: 29733511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lenvatinib Targets FGF Receptor 4 to Enhance Antitumor Immune Response of Anti-Programmed Cell Death-1 in HCC.
    Yi C; Chen L; Lin Z; Liu L; Shao W; Zhang R; Lin J; Zhang J; Zhu W; Jia H; Qin L; Lu L; Chen J
    Hepatology; 2021 Nov; 74(5):2544-2560. PubMed ID: 34036623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunomodulatory Effects of Current Targeted Therapies on Hepatocellular Carcinoma: Implication for the Future of Immunotherapy.
    Lin YY; Tan CT; Chen CW; Ou DL; Cheng AL; Hsu C
    Semin Liver Dis; 2018 Nov; 38(4):379-388. PubMed ID: 30357775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different Mechanisms of Action of Regorafenib and Lenvatinib on Toll-Like Receptor-Signaling Pathways in Human Hepatoma Cell Lines.
    Sasaki R; Kanda T; Fujisawa M; Matsumoto N; Masuzaki R; Ogawa M; Matsuoka S; Kuroda K; Moriyama M
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lenvatinib suppresses cancer stem-like cells in HCC by inhibiting FGFR1-3 signaling, but not FGFR4 signaling.
    Shigesawa T; Maehara O; Suda G; Natsuizaka M; Kimura M; Shimazaki T; Yamamoto K; Yamada R; Kitagataya T; Nakamura A; Suzuki K; Ohara M; Kawagishi N; Umemura M; Nakai M; Sho T; Morikawa K; Ogawa K; Ohnishi S; Sugiyama M; Mizokami M; Takeda H; Sakamoto N
    Carcinogenesis; 2021 Feb; 42(1):58-69. PubMed ID: 32449510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway.
    Kato Y; Tabata K; Kimura T; Yachie-Kinoshita A; Ozawa Y; Yamada K; Ito J; Tachino S; Hori Y; Matsuki M; Matsuoka Y; Ghosh S; Kitano H; Nomoto K; Matsui J; Funahashi Y
    PLoS One; 2019; 14(2):e0212513. PubMed ID: 30811474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma.
    Liu Z; Lin Y; Zhang J; Zhang Y; Li Y; Liu Z; Li Q; Luo M; Liang R; Ye J
    J Exp Clin Cancer Res; 2019 Nov; 38(1):447. PubMed ID: 31684985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular therapies for HCC: Looking outside the box.
    Faivre S; Rimassa L; Finn RS
    J Hepatol; 2020 Feb; 72(2):342-352. PubMed ID: 31954496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunomodulatory Effects of Lenvatinib Plus Anti-Programmed Cell Death Protein 1 in Mice and Rationale for Patient Enrichment in Hepatocellular Carcinoma.
    Torrens L; Montironi C; Puigvehí M; Mesropian A; Leslie J; Haber PK; Maeda M; Balaseviciute U; Willoughby CE; Abril-Fornaguera J; Piqué-Gili M; Torres-Martín M; Peix J; Geh D; Ramon-Gil E; Saberi B; Friedman SL; Mann DA; Sia D; Llovet JM
    Hepatology; 2021 Nov; 74(5):2652-2669. PubMed ID: 34157147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR-MAPK cascades.
    Hoshi T; Watanabe Miyano S; Watanabe H; Sonobe RMK; Seki Y; Ohta E; Nomoto K; Matsui J; Funahashi Y
    Biochem Biophys Res Commun; 2019 May; 513(1):1-7. PubMed ID: 30944079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Progression-Free Survival with Cabozantinib Versus Placebo in Patients with Radioiodine-Refractory Differentiated Thyroid Cancer Irrespective of Prior Vascular Endothelial Growth Factor Receptor-Targeted Therapy and Tumor Histology: A Subgroup Analysis of the COSMIC-311 Study.
    Capdevila J; Krajewska J; Hernando J; Robinson B; Sherman SI; Jarzab B; Lin CC; Vaisman F; Hoff AO; Hitre E; Bowles DW; Williamson D; Levytskyy R; Oliver J; Keam B; Brose MS
    Thyroid; 2024 Mar; 34(3):347-359. PubMed ID: 38062732
    [No Abstract]   [Full Text] [Related]  

  • 17. Anti-PD-1/PD-L1 therapy augments lenvatinib's efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer.
    Gunda V; Gigliotti B; Ashry T; Ndishabandi D; McCarthy M; Zhou Z; Amin S; Lee KE; Stork T; Wirth L; Freeman GJ; Alessandrini A; Parangi S
    Int J Cancer; 2019 May; 144(9):2266-2278. PubMed ID: 30515783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review article: new therapeutic interventions for advanced hepatocellular carcinoma.
    Bangaru S; Marrero JA; Singal AG
    Aliment Pharmacol Ther; 2020 Jan; 51(1):78-89. PubMed ID: 31747082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review article: systemic treatment of hepatocellular carcinoma.
    Pinter M; Peck-Radosavljevic M
    Aliment Pharmacol Ther; 2018 Sep; 48(6):598-609. PubMed ID: 30039640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice.
    Chen Y; Ramjiawan RR; Reiberger T; Ng MR; Hato T; Huang Y; Ochiai H; Kitahara S; Unan EC; Reddy TP; Fan C; Huang P; Bardeesy N; Zhu AX; Jain RK; Duda DG
    Hepatology; 2015 May; 61(5):1591-602. PubMed ID: 25529917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.