These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37864883)

  • 1. Extreme Monovalent Ion Selectivity Via Capacitive Ion Exchange.
    Sahray Z; Shocron AN; Uwayid R; Diesendruck CE; Suss ME
    Water Res; 2023 Nov; 246():120684. PubMed ID: 37864883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect divalent cation selectivity with capacitive deionization.
    Uwayid R; Guyes EN; Shocron AN; Gilron J; Elimelech M; Suss ME
    Water Res; 2022 Feb; 210():117959. PubMed ID: 34942526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the Ion-Size-Based Selectivity of Capacitive Deionization Electrodes.
    Guyes EN; Malka T; Suss ME
    Environ Sci Technol; 2019 Jul; 53(14):8447-8454. PubMed ID: 31187620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning mono-divalent cation water composition by the capacitive ion-exchange mechanism.
    Lado JJ; García-Quismondo E; Fombona-Pascual A; Mavrandonakis A; de la Cruz C; Oropeza FE; de la Peña O'Shea VA; de Smet LCPM; Palma J
    Water Res; 2024 May; 255():121469. PubMed ID: 38493740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective adsorption of nitrate over chloride in microporous carbons.
    Mubita TM; Dykstra JE; Biesheuvel PM; van der Wal A; Porada S
    Water Res; 2019 Nov; 164():114885. PubMed ID: 31426005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI.
    Ma J; He C; He D; Zhang C; Waite TD
    Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening.
    Wang L; Lin S
    Environ Sci Technol; 2019 May; 53(10):5797-5804. PubMed ID: 31013430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-Circuited Closed-Cycle Operation of Flow-Electrode CDI for Brackish Water Softening.
    He C; Ma J; Zhang C; Song J; Waite TD
    Environ Sci Technol; 2018 Aug; 52(16):9350-9360. PubMed ID: 30052435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation selectivity of activated carbon and nickel hexacyanoferrate electrode materials in capacitive deionization: A comparison study.
    Chen TH; Cuong DV; Jang Y; Khu NZ; Chung E; Hou CH
    Chemosphere; 2022 Nov; 307(Pt 1):135613. PubMed ID: 35810870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.