These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37864911)

  • 1. ResCNNT-fold: Combining residual convolutional neural network and Transformer for protein fold recognition from language model embeddings.
    Qin X; Liu M; Liu G
    Comput Biol Med; 2023 Nov; 166():107571. PubMed ID: 37864911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Fold Recognition From Sequences Using Convolutional and Recurrent Neural Networks.
    Villegas-Morcillo A; Gomez AM; Morales-Cordovilla JA; Sanchez V
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2848-2854. PubMed ID: 32750896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why can deep convolutional neural networks improve protein fold recognition? A visual explanation by interpretation.
    Liu Y; Zhu YH; Song X; Song J; Yu DJ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33537753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving protein fold recognition using triplet network and ensemble deep learning.
    Liu Y; Han K; Zhu YH; Zhang Y; Shen LC; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving protein-protein interaction prediction using protein language model and protein network features.
    Hu J; Li Z; Rao B; Thafar MA; Arif M
    Anal Biochem; 2024 Oct; 693():115550. PubMed ID: 38679191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ILMCNet: A Deep Neural Network Model That Uses PLM to Process Features and Employs CRF to Predict Protein Secondary Structure.
    Dong B; Su H; Xu D; Hou C; Liu Z; Niu N; Wang G
    Genes (Basel); 2024 Oct; 15(10):. PubMed ID: 39457474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performing protein fold recognition by exploiting a stack convolutional neural network with the attention mechanism.
    Han K; Liu Y; Xu J; Song J; Yu DJ
    Anal Biochem; 2022 Aug; 651():114695. PubMed ID: 35487269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of protein language model embeddings for fold prediction.
    Villegas-Morcillo A; Gomez AM; Sanchez V
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Fold Recognition by Combining Support Vector Machines and Pairwise Sequence Similarity Scores.
    Yan K; Wen J; Liu JX; Xu Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):2008-2016. PubMed ID: 31940548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetalTrans: A Biological Language Model-Based Approach for Predicting Disease-Associated Mutations in Protein Metal-Binding Sites.
    Zhang M; Wang X; Xu S; Ge F; Paixao IC; Song J; Yu DJ
    J Chem Inf Model; 2024 Aug; 64(15):6216-6229. PubMed ID: 39092854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model.
    Yan K; Wen J; Xu Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2682-2691. PubMed ID: 32356759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepSF: deep convolutional neural network for mapping protein sequences to folds.
    Hou J; Adhikari B; Cheng J
    Bioinformatics; 2018 Apr; 34(8):1295-1303. PubMed ID: 29228193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fold-LTR-TCP: protein fold recognition based on triadic closure principle.
    Liu B; Zhu Y; Yan K
    Brief Bioinform; 2020 Dec; 21(6):2185-2193. PubMed ID: 31813954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PreDBP-PLMs: Prediction of DNA-binding proteins based on pre-trained protein language models and convolutional neural networks.
    Qi D; Song C; Liu T
    Anal Biochem; 2024 Nov; 694():115603. PubMed ID: 38986796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images.
    Li GY; Chen J; Jang SI; Gong K; Li Q
    Med Phys; 2024 Mar; 51(3):2096-2107. PubMed ID: 37776263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model.
    Pratyush P; Bahmani S; Pokharel S; Ismail HD; Kc DB
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network.
    Ouyang J; Gao Y; Yang Y
    BMC Bioinformatics; 2024 Sep; 25(1):287. PubMed ID: 39223474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TransPTM: a transformer-based model for non-histone acetylation site prediction.
    Meng L; Chen X; Cheng K; Chen N; Zheng Z; Wang F; Sun H; Wong KC
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38725156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FoldHSphere: deep hyperspherical embeddings for protein fold recognition.
    Villegas-Morcillo A; Sanchez V; Gomez AM
    BMC Bioinformatics; 2021 Oct; 22(1):490. PubMed ID: 34641786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.