These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 3786494)
1. Minimum duration of light signals capable of producing the Aschoff effect. Ferraro JS; McCormack CE Physiol Behav; 1986; 38(1):139-44. PubMed ID: 3786494 [TBL] [Abstract][Full Text] [Related]
2. The effects of feedback lighting on the circadian rhythm of locomotor activity and the reproductive maturation of the male Djungarian hamster (Phodopus sungorus). Ferraro JS J Interdiscipl Cycle Res; 1988; 19(1):29-47. PubMed ID: 11539080 [TBL] [Abstract][Full Text] [Related]
3. Gonadal regression despite light pulses coincident with locomotor activity in the Syrian hamster. Ferraro JS; McCormack CE Biol Reprod; 1985 Aug; 33(1):93-102. PubMed ID: 3904852 [TBL] [Abstract][Full Text] [Related]
4. Nocturnal illumination does not necessarily stimulate the photoperiodic response, despite mimicking the effects of constant light on the circadian system in the male Syrian hamster. Ferraro JS; Krum HN; Bartke A; Wassmer GT; Chandrashekar V; Michael SD; Sulzman FM Physiol Behav; 1990 Mar; 47(3):577-88. PubMed ID: 2113674 [TBL] [Abstract][Full Text] [Related]
5. Nocturnal illumination maintains reproductive function and simulates the period-lengthening effect of constant light in the mature male Djungarian hamster (Phodopus sungorus). Ferraro JS J Interdiscipl Cycle Res; 1990; 21(1):1-16. PubMed ID: 11538043 [TBL] [Abstract][Full Text] [Related]
6. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes. Schöttner K; Hauer J; Weinert D Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879 [TBL] [Abstract][Full Text] [Related]
7. Effects of light on the circadian activity rhythm of Djungarian hamsters (Phodopus sungorus) with delayed activity onset. Schottner K; Weinert D Chronobiol Int; 2010 Jan; 27(1):95-110. PubMed ID: 20205560 [TBL] [Abstract][Full Text] [Related]
8. Nature of the light stimulus producing Aschoff's intensity effect and anovulation. Ferraro JS; McCormack CE Am J Physiol; 1984 Aug; 247(2 Pt 2):R296-301. PubMed ID: 6465345 [TBL] [Abstract][Full Text] [Related]
9. Free-running rhythms and light- and dark-pulse phase response curves for diurnal Octodon degus (Rodentia). Lee TM; Labyak SE Am J Physiol; 1997 Jul; 273(1 Pt 2):R278-86. PubMed ID: 9249561 [TBL] [Abstract][Full Text] [Related]
10. The effects of feedback lighting on the circadian drinking rhythm in the diurnal new world primate Saimiri sciureus. Ferraro JS; Sulzman FM Am J Primatol; 1988; 15(2):143-55. PubMed ID: 11539805 [TBL] [Abstract][Full Text] [Related]
12. An improved method for precise control of light exposure at a known circadian time during an animal's subjective night. Ferraro JS; Antonakos JL; Hallam JM Physiol Behav; 1998 Feb; 63(4):717-21. PubMed ID: 9523921 [TBL] [Abstract][Full Text] [Related]
13. Properties of parametric photic entrainment of circadian rhythms in the rat. Ruis JF; Rietveld WJ; Buys JP Physiol Behav; 1991 Dec; 50(6):1233-9. PubMed ID: 1798780 [TBL] [Abstract][Full Text] [Related]
14. Phase-response and Aschoff illuminance curves for locomotor activity rhythm of the rat. Summer TL; Ferraro JS; McCormack CE Am J Physiol; 1984 Mar; 246(3 Pt 2):R299-304. PubMed ID: 6703083 [TBL] [Abstract][Full Text] [Related]
15. Splitting of the locomotor activity rhythm in rats by exposure to continuous light. Cheung PW; McCormack CE Am J Physiol; 1983 Apr; 244(4):R573-6. PubMed ID: 6682294 [TBL] [Abstract][Full Text] [Related]
16. Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina. Thakurdas P; Sharma S; Singh B; Vanlalhriatpuia K; Joshi D Chronobiol Int; 2011 May; 28(5):390-6. PubMed ID: 21721854 [TBL] [Abstract][Full Text] [Related]
17. Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light. Cambras T; Díez-Noguera A Chronobiol Int; 2012 Jul; 29(6):693-701. PubMed ID: 22734570 [TBL] [Abstract][Full Text] [Related]
18. Effects of light intensity and restraint on dark-pulse-induced circadian phase shifting during subjective night in Syrian hamsters. Dwyer SM; Rosenwasser AM J Biol Rhythms; 2000 Dec; 15(6):491-500. PubMed ID: 11106066 [TBL] [Abstract][Full Text] [Related]
19. Circadian and photoperiodic effects of brief light pulses in male Djungarian hamsters. Milette JJ; Turek FW Biol Reprod; 1986 Sep; 35(2):327-35. PubMed ID: 3094595 [TBL] [Abstract][Full Text] [Related]
20. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus. Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]