These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37865024)

  • 1. Deep graph convolutional network for small-molecule retention time prediction.
    Kang Q; Fang P; Zhang S; Qiu H; Lan Z
    J Chromatogr A; 2023 Nov; 1711():464439. PubMed ID: 37865024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention time prediction in hydrophilic interaction liquid chromatography with graph neural network and transfer learning.
    Yang Q; Ji H; Fan X; Zhang Z; Lu H
    J Chromatogr A; 2021 Oct; 1656():462536. PubMed ID: 34563892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Liquid Chromatographic Retention Time with Graph Neural Networks to Assist in Small Molecule Identification.
    Yang Q; Ji H; Lu H; Zhang Z
    Anal Chem; 2021 Feb; 93(4):2200-2206. PubMed ID: 33406817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-channel deep graph convolutional neural networks.
    Ye Z; Li Z; Li G; Zhao H
    Front Artif Intell; 2024; 7():1290491. PubMed ID: 38638112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Neural Network Pretrained by Weighted Autoencoders and Transfer Learning for Retention Time Prediction of Small Molecules.
    Ju R; Liu X; Zheng F; Lu X; Xu G; Lin X
    Anal Chem; 2021 Nov; 93(47):15651-15658. PubMed ID: 34780148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RT-Transformer: retention time prediction for metabolite annotation to assist in metabolite identification.
    Xue J; Wang B; Ji H; Li W
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38402516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for retention time prediction in reversed-phase liquid chromatography.
    Fedorova ES; Matyushin DD; Plyushchenko IV; Stavrianidi AN; Buryak AK
    J Chromatogr A; 2022 Feb; 1664():462792. PubMed ID: 34999303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retention time prediction for small samples based on integrating molecular representations and adaptive network.
    Wang X; Zheng F; Sheng M; Xu G; Lin X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Feb; 1217():123624. PubMed ID: 36780745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Costless Performance Improvement in Machine Learning for Graph-Based Molecular Analysis.
    Na GS; Kim HW; Chang H
    J Chem Inf Model; 2020 Mar; 60(3):1137-1145. PubMed ID: 31928003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Survey on Graph Neural Networks.
    Wu Z; Pan S; Chen F; Long G; Zhang C; Yu PS
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):4-24. PubMed ID: 32217482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-MHGCN: An End-to-End Individual Behavioral Prediction Model Using Dual Multi-Hop Graph Convolutional Network.
    Wen X; Cao Q; Zhao Y; Wu X; Zhang D
    IEEE J Biomed Health Inform; 2024 Oct; 28(10):6130-6140. PubMed ID: 38935468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction.
    Li S; Zhang R
    Neural Netw; 2024 Jul; 175():106285. PubMed ID: 38593556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction method of pharmacokinetic parameters of small molecule drugs based on GCN network model.
    Yang Z; Wang Y; Du G; Zhan Y; Zhan W
    J Mol Model; 2024 Jul; 30(8):264. PubMed ID: 38995407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and effective convolutional operator for node classification without features by graph convolutional networks.
    Jiao Q; Zhang H; Wu J; Wang N; Liu G; Liu Y
    PLoS One; 2024; 19(4):e0301476. PubMed ID: 38687815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Graph Neural Network Approach for the Analysis of siRNA-Target Biological Networks.
    La Rosa M; Fiannaca A; La Paglia L; Urso A
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance and robustness of small molecule retention time prediction with molecular graph neural networks in industrial drug discovery campaigns.
    Vik D; Pii D; Mudaliar C; Nørregaard-Madsen M; Kontijevskis A
    Sci Rep; 2024 Apr; 14(1):8733. PubMed ID: 38627535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph Convolutional Networks for Improved Prediction and Interpretability of Chromatographic Retention Data.
    Kensert A; Bouwmeester R; Efthymiadis K; Van Broeck P; Desmet G; Cabooter D
    Anal Chem; 2021 Nov; 93(47):15633-15641. PubMed ID: 34780168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MGLNN: Semi-supervised learning via Multiple Graph Cooperative Learning Neural Networks.
    Jiang B; Chen S; Wang B; Luo B
    Neural Netw; 2022 Sep; 153():204-214. PubMed ID: 35750007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction.
    Yang Z; Zhong W; Zhao L; Yu-Chian Chen C
    Chem Sci; 2022 Jan; 13(3):816-833. PubMed ID: 35173947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.