BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37865071)

  • 1. Size-dependent photocatalytic inactivation of Microcystis aeruginosa and degradation of microcystin by a copper metal organic framework.
    Yue L; Tao M; Xu L; Wang C; Xu Y; Liu Y; Cao X; White JC; Wang Z
    J Hazard Mater; 2024 Jan; 462():132799. PubMed ID: 37865071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Needle" hidden in silk floss: Inactivation effect and mechanism of melamine sponge loaded bismuth oxide composite copper-metal organic framework (MS/Bi
    Wang M; Chen J; Wei Y; Hu L; Xu Y; Liu Y; Wang R
    J Hazard Mater; 2024 Mar; 465():133273. PubMed ID: 38113729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74: Efficiency and its mechanisms.
    Fan G; Bao M; Zheng X; Hong L; Zhan J; Chen Z; Qu F
    J Hazard Mater; 2019 Apr; 367():529-538. PubMed ID: 30641423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removal of harmful algal cells and toxins by a Ag
    Fan G; Chen Z; Hong L; Du B; Yan Z; Zhan J; You Y; Ning R; Xiao H
    Sci Total Environ; 2020 Nov; 741():140341. PubMed ID: 32615428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast photocatalytic inactivation of Microcystis aeruginosa by metal-organic frameworks under visible light.
    Fan G; Zhou J; Zheng X; Luo J; Hong L; Qu F
    Chemosphere; 2020 Jan; 239():124721. PubMed ID: 31493752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth inhibition of
    Fan G; Hong L; Zheng X; Zhou J; Zhan J; Chen Z; Liu S
    RSC Adv; 2018 Oct; 8(61):35314-35326. PubMed ID: 35547055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetically separable ZnFe
    Fan G; Lin X; You Y; Du B; Li X; Luo J
    J Hazard Mater; 2022 Jan; 421():126703. PubMed ID: 34315026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic degradation effect and mechanism of Karenia mikimotoi by non-noble metal modified TiO
    Hu L; Chen J; Wei Y; Wang M; Xu Y; Wang C; Gao P; Liu Y; Liu C; Song Y; Ding N; Liu X; Wang R
    J Hazard Mater; 2023 Jan; 442():130059. PubMed ID: 36179626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacteria control using Cu-based metal organic frameworks derived from waste PET bottles.
    Kim Y; Kalimuthu P; Nam G; Jung J
    Environ Res; 2023 May; 224():115532. PubMed ID: 36822531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive review on the photocatalytic inactivation of Microcystis aeruginosa: Performance, development, and mechanisms.
    Sun S; Tang Q; Xu H; Gao Y; Zhang W; Zhou L; Li Y; Wang J; Song C
    Chemosphere; 2023 Jan; 312(Pt 1):137239. PubMed ID: 36379431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Cu
    Gao X; Feng W; Zhang J; Zhang H; Huo S
    Environ Pollut; 2023 Oct; 334():122186. PubMed ID: 37442327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective photocatalytic inactivation of Microcystis aeruginosa by Ag
    Fan G; Lin Q; Lin J; Xia M; Chen S; Luo J; Zou J; Hong Z; Xu K
    Chemosphere; 2024 Jan; 347():140710. PubMed ID: 37979804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxins from harmful algal blooms: How copper and iron render chalkophore a predictor of microcystin production.
    Li B; Zhang X; Wu G; Qin B; Tefsen B; Wells M
    Water Res; 2023 Oct; 244():120490. PubMed ID: 37659180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CuO nanoparticles doping recovered the photocatalytic antialgal activity of graphitic carbon nitride.
    Cao X; Yue L; Lian F; Wang C; Cheng B; Lv J; Wang Z; Xing B
    J Hazard Mater; 2021 Feb; 403():123621. PubMed ID: 32810715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of CuSO
    Iwinski KJ; Rodgers JH; Kinley CM; Hendrikse M; Calomeni AJ; McQueen AD; Geer TD; Liang J; Friesen V; Haakensen M
    Chemosphere; 2017 May; 174():538-544. PubMed ID: 28193586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release.
    Tsai KP
    Ecotoxicol Environ Saf; 2015 Oct; 120():428-35. PubMed ID: 26141781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Immolative Polythiophene for Sunlight Inactivation of Harmful Cyanobacteria.
    Lang Y; Wang Y; Zhou R; Wu P
    Environ Sci Technol; 2023 May; 57(20):7800-7808. PubMed ID: 37163388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nonylphenol on the growth and microcystin production of Microcystis strains.
    Wang J; Xie P; Guo N
    Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular and aqueous microcystin-LR following laboratory exposures of Microcystis aeruginosa to copper algaecides.
    Iwinski KJ; Calomeni AJ; Geer TD; Rodgers JH
    Chemosphere; 2016 Mar; 147():74-81. PubMed ID: 26761600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of titanium dioxide nanoparticles on Microcystis aeruginosa and microcystins production and release.
    Wu D; Yang S; Du W; Yin Y; Zhang J; Guo H
    J Hazard Mater; 2019 Sep; 377():1-7. PubMed ID: 31129339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.