BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37865071)

  • 21. Effects on photosynthetic and antioxidant systems of harmful cyanobacteria by nanocrystalline Zn-MOF-FA.
    Wang X; Huang K; Gao J; Szeto YT; Jiang C; Zhu J; Zhang J; Liu J
    Sci Total Environ; 2021 Oct; 792():148247. PubMed ID: 34147792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.
    Kinley CM; Iwinski KJ; Hendrikse M; Geer TD; Rodgers JH
    Ecotoxicol Environ Saf; 2017 Nov; 145():591-596. PubMed ID: 28802140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Microcystis aeruginosa coagulation and removal by palladium clusters doped g-C
    Lu S; Li X; Yu B; Ding J; Zhong Y; Zhang H
    Ecotoxicol Environ Saf; 2022 Nov; 246():114148. PubMed ID: 36194938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of divalent metals Cu
    Ao D; Lei Z; Dzakpasu M; Chen R
    Toxicon; 2019 Dec; 170():51-59. PubMed ID: 31526809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-floating photocatalytic hydrogel for efficient removal of Microcystis aeruginosa and degradation of microcystins-LR.
    Fan G; Chen Z; Gu S; Du B; Wang L
    Chemosphere; 2021 Dec; 284():131283. PubMed ID: 34323790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa.
    Qian H; Yu S; Sun Z; Xie X; Liu W; Fu Z
    Aquat Toxicol; 2010 Sep; 99(3):405-12. PubMed ID: 20566224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controllable synthesis of copper-organic frameworks via ligand adjustment for enhanced photo-Fenton-like catalysis.
    Duan WL; Li YX; Feng-Yan ; Li WZ; Luan J
    J Colloid Interface Sci; 2023 Sep; 646():107-117. PubMed ID: 37187044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: Antioxidant response, photosynthetic system damage and microcystin degradation.
    Li D; Kang X; Chu L; Wang Y; Song X; Zhao X; Cao X
    Environ Pollut; 2021 Oct; 287():117644. PubMed ID: 34426391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback.
    Tang Y; Xin H; Yang S; Guo M; Malkoske T; Yin D; Xia S
    Aquat Toxicol; 2018 Nov; 204():19-26. PubMed ID: 30170208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans.
    Mohamed ZA; Al-Shehri AM
    Ecotoxicol Environ Saf; 2013 Oct; 96():48-52. PubMed ID: 23856124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of CeO
    Zhao G; Wu D; Cao S; Du W; Yin Y; Guo H
    Bull Environ Contam Toxicol; 2020 Jun; 104(6):834-839. PubMed ID: 32306073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of Rhodamine B under solar light.
    Pattappan D; Vargheese S; Kavya KV; Kumar RTR; Haldorai Y
    Chemosphere; 2022 Jan; 286(Pt 2):131726. PubMed ID: 34343921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological characteristics and toxin production of Microcystis aeruginosa (Cyanobacterium) in response to DOM in anaerobic digestion effluent.
    Lin Y; Chen A; Peng L; Luo S; Zeng Q; Shao J
    Sci Total Environ; 2019 Oct; 685():902-910. PubMed ID: 31247437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms.
    Wu H; Wei G; Tan X; Li L; Li M
    Sci Rep; 2017 Jan; 7():40393. PubMed ID: 28079177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity assessment and underlying mechanisms of multiple metal organic frameworks using the green algae Chlamydomonas reinhardtii model.
    Li Y; Shang S; Shang J; Wang WX
    Environ Pollut; 2021 Dec; 291():118199. PubMed ID: 34555797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of selenite on Microcystis aeruginosa: Growth, microcystin production and its relationship to toxicity under hypersalinity and copper sulfate stresses.
    Zhou C; Huang JC; Liu F; He S; Zhou W
    Environ Pollut; 2017 Apr; 223():535-544. PubMed ID: 28129951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ZnO-based Cu metal-organic framework (MOF) nanocomposite for boosting and tuning the photocatalytic degradation performance.
    Roy S; Darabdhara J; Ahmaruzzaman M
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):95673-95691. PubMed ID: 37556061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative effects of inorganic and organic nitrogen on the growth and microcystin production of Microcystis aeruginosa.
    Yan Y; Dai R; Liu Y; Gao J; Wu X
    World J Microbiol Biotechnol; 2015 May; 31(5):763-72. PubMed ID: 25726035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-Organic Framework/Chitosan Hybrid Materials Promote Nitric Oxide Release from S-Nitrosoglutathione in Aqueous Solution.
    Neufeld MJ; Lutzke A; Tapia JB; Reynolds MM
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5139-5148. PubMed ID: 28164705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.