These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37865672)

  • 1. A lightweight hybrid vision transformer network for radar-based human activity recognition.
    Huan S; Wang Z; Wang X; Wu L; Yang X; Huang H; Dai GE
    Sci Rep; 2023 Oct; 13(1):17996. PubMed ID: 37865672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
    Huan S; Wu L; Zhang M; Wang Z; Yang C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FMCW Radar Human Action Recognition Based on Asymmetric Convolutional Residual Blocks.
    Zhang Y; Tang H; Wu Y; Wang B; Yang D
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Activity Recognition Method Based on FMCW Radar Sensor with Multi-Domain Feature Attention Fusion Network.
    Cao L; Liang S; Zhao Z; Wang D; Fu C; Du K
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Learning-Based Approach for Cervical Cancer Classification Using 3D CNN and Vision Transformer.
    K A; B S
    J Imaging Inform Med; 2024 Feb; 37(1):280-296. PubMed ID: 38343216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lightweight Hybrid Model with Location-Preserving ViT for Efficient Food Recognition.
    Sheng G; Min W; Zhu X; Xu L; Sun Q; Yang Y; Wang L; Jiang S
    Nutrients; 2024 Jan; 16(2):. PubMed ID: 38257093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lightweight high-precision SAR ship detection method based on YOLOv7-LDS.
    Zhu S; Miao M
    PLoS One; 2024; 19(2):e0296992. PubMed ID: 38349872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data.
    Tan TH; Tian JH; Sharma AK; Liu SH; Huang YF
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos.
    Hussain A; Hussain T; Ullah W; Baik SW
    Comput Intell Neurosci; 2022; 2022():3454167. PubMed ID: 35419045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Millimeter-Wave Array Radar-Based Human Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural Network.
    Jiang X; Zhang Y; Yang Q; Deng B; Wang H
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Level Spatio-Temporal Feature Fused Two-Stream Network for Micro-Expression Recognition.
    Wang Z; Yang M; Jiao Q; Xu L; Han B; Li Y; Tan X
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Branch Interactive Networks on Multichannel Time Series for Human Activity Recognition.
    Tang Y; Zhang L; Wu H; He J; Song A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5223-5234. PubMed ID: 35867366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SW-UNet: a U-Net fusing sliding window transformer block with CNN for segmentation of lung nodules.
    Ma J; Yuan G; Guo C; Gang X; Zheng M
    Front Med (Lausanne); 2023; 10():1273441. PubMed ID: 37841008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radar-based human activity recognition with adaptive thresholding towards resource constrained platforms.
    Li Z; Le Kernec J; Abbasi Q; Fioranelli F; Yang S; Romain O
    Sci Rep; 2023 Mar; 13(1):3473. PubMed ID: 36859571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition.
    Zeng F; Guo M; Tan L; Guo F; Liu X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Feature Transformer-Based Learning for Continuous Human Motion Recognition with High Similarity Using mmWave FMCW Radar.
    Chen YS; Cheng KH; Xu YA; Juang TY
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whitening-Aided Learning from Radar Micro-Doppler Signatures for Human Activity Recognition.
    Sadeghi Adl Z; Ahmad F
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Human Micro-Doppler Signature Based on Layer-Reduced Deep Convolutional Generative Adversarial Network.
    Ostovan M; Samadi S; Kazemi A
    Comput Intell Neurosci; 2022; 2022():7365544. PubMed ID: 35463251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision Transformers (ViT) for Blanket-Penetrating Sleep Posture Recognition Using a Triple Ultra-Wideband (UWB) Radar System.
    Lai DK; Yu ZH; Leung TY; Lim HJ; Tam AY; So BP; Mao YJ; Cheung DSK; Wong DW; Cheung JC
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PMVT: a lightweight vision transformer for plant disease identification on mobile devices.
    Li G; Wang Y; Zhao Q; Yuan P; Chang B
    Front Plant Sci; 2023; 14():1256773. PubMed ID: 37822342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.