BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37865920)

  • 1. Enhanced Heat Flow between Charged Nanoparticles and an Aqueous Electrolyte.
    Rabani R; Saidi MH; Rajabpour A; Joly L; Merabia S
    Langmuir; 2023 Oct; 39(43):15222-15230. PubMed ID: 37865920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal transport at a nanoparticle-water interface: A molecular dynamics and continuum modeling study.
    Rajabpour A; Seif R; Arabha S; Heyhat MM; Merabia S; Hassanali A
    J Chem Phys; 2019 Mar; 150(11):114701. PubMed ID: 30901998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal transport at a solid-nanofluid interface: from increase of thermal resistance towards a shift of rapid boiling.
    Han H; Merabia S; Müller-Plathe F
    Nanoscale; 2017 Jun; 9(24):8314-8320. PubMed ID: 28585964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent effects of the thermal transport at gold nanoparticle-water interfaces.
    Gutiérrez-Varela O; Merabia S; Santamaria R
    J Chem Phys; 2022 Aug; 157(8):084702. PubMed ID: 36050018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of the spherical electrical double layer of a soft nanoparticle: effect of the surface charge and counterion valence.
    Nedyalkova M; Madurga S; Pisov S; Pastor I; Vilaseca E; Mas F
    J Chem Phys; 2012 Nov; 137(17):174701. PubMed ID: 23145736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial water and ion distribution determine ζ potential and binding affinity of nanoparticles to biomolecules.
    Liang D; Dahal U; Zhang YK; Lochbaum C; Ray D; Hamers RJ; Pedersen JA; Cui Q
    Nanoscale; 2020 Sep; 12(35):18106-18123. PubMed ID: 32852025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Electrostatic Interactions on Kapitza Resistance in Hexagonal Boron Nitride-Water Interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    Langmuir; 2022 Jul; 38(29):8783-8793. PubMed ID: 35830549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic Insight into the Effects of Depositional Nanoparticle on Nanoscale Liquid Film Evaporation.
    Wu L; Shao W; Cao Q; Cui Z
    Langmuir; 2021 May; 37(17):5202-5212. PubMed ID: 33881886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer.
    McNamee CE
    Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation.
    Lyubimova O; Stoyanov SR; Gusarov S; Kovalenko A
    Langmuir; 2015 Jun; 31(25):7106-16. PubMed ID: 26053228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of charged nanoparticle self-assembly at ionic liquid-water and ionic liquid-oil interfaces.
    Frost DS; Dai LL
    J Chem Phys; 2012 Feb; 136(8):084706. PubMed ID: 22380058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A; Barisik M; Kim B
    J Chem Phys; 2013 Dec; 139(24):244702. PubMed ID: 24387383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced local viscosity around colloidal nanoparticles probed by equilibrium molecular dynamics simulations.
    Rabani R; Saidi MH; Joly L; Merabia S; Rajabpour A
    J Chem Phys; 2021 Nov; 155(17):174701. PubMed ID: 34742212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor Nanobubbles around Heated Nanoparticles: Wetting Dependence of the Local Fluid Thermodynamics and Kinetics of Nucleation.
    Gutiérrez-Varela O; Lombard J; Biben T; Santamaria R; Merabia S
    Langmuir; 2023 Dec; 39(50):18263-18275. PubMed ID: 38061075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curvature and temperature-dependent thermal interface conductance between nanoscale gold and water.
    Wilson BA; Nielsen SO; Randrianalisoa JH; Qin Z
    J Chem Phys; 2022 Aug; 157(5):054703. PubMed ID: 35933210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes.
    Guerrero García GI; Olvera de la Cruz M
    J Phys Chem B; 2014 Jul; 118(29):8854-62. PubMed ID: 24953671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Is a coarse-grained model for water sufficient to compute Kapitza conductance on non-polar surfaces?
    Ardham VR; Leroy F
    J Chem Phys; 2017 Oct; 147(15):151102. PubMed ID: 29055310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.