BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37865947)

  • 1. Engineering Mesoscopic 3D Tumor Models with a Self-Organizing Vascularized Matrix.
    De Lorenzi F; Hansen N; Theek B; Daware R; Motta A; Breuel S; Nasehi R; Baumeister J; Schöneberg J; Stojanović N; von Stillfried S; Vogt M; Müller-Newen G; Maurer J; Sofias AM; Lammers T; Fischer H; Kiessling F
    Adv Mater; 2024 Feb; 36(5):e2303196. PubMed ID: 37865947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.
    Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT
    Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels.
    Jiang T; Munguia-Lopez JG; Flores-Torres S; Grant J; Vijayakumar S; Leon-Rodriguez A; Kinsella JM
    Sci Rep; 2017 Jul; 7(1):4575. PubMed ID: 28676662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
    Ong CS; Pitaktong I; Hibino N
    Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinting of 3D breast epithelial spheroids for human cancer models.
    Swaminathan S; Hamid Q; Sun W; Clyne AM
    Biofabrication; 2019 Jan; 11(2):025003. PubMed ID: 30616234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis.
    Shrestha S; Lekkala VKR; Acharya P; Siddhpura D; Lee MY
    Essays Biochem; 2021 Aug; 65(3):481-489. PubMed ID: 34296737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Bioprinting of 3D Multicellular Breast Spheroids onto Endothelial Networks.
    Swaminathan S; Clyne AM
    J Vis Exp; 2020 Nov; (165):. PubMed ID: 33191938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis.
    Anada T; Pan CC; Stahl AM; Mori S; Fukuda J; Suzuki O; Yang Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput fabrication of vascularized spheroids for bioprinting.
    De Moor L; Merovci I; Baetens S; Verstraeten J; Kowalska P; Krysko DV; De Vos WH; Declercq H
    Biofabrication; 2018 Jun; 10(3):035009. PubMed ID: 29798932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Sacrificial Cell Spheroids for the Bioprinting of Perfusable 3D Tissue and Organ Constructs: A Computational Study.
    Robu A; Mironov V; Neagu A
    Comput Math Methods Med; 2019; 2019():7853586. PubMed ID: 31236128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting.
    Jian H; Wang M; Dong Q; Li J; Wang A; Li X; Ren P; Bai S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46419-46426. PubMed ID: 31769283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Highly Vascularized Bone Tissues by 3D Bioprinting of Granular Prevascularized Spheroids.
    Fang Y; Ji M; Wu B; Xu X; Wang G; Zhang Y; Xia Y; Li Z; Zhang T; Sun W; Xiong Z
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43492-43502. PubMed ID: 37691550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale, Automated Production of Adipose-Derived Stem Cell Spheroids for 3D Bioprinting.
    Kronemberger GS; Miranda GASC; Silva TIG; Gonçalves RM; Granjeiro JM; Baptista LS
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for 3D bioprinting of spheroids: A comprehensive review.
    Banerjee D; Singh YP; Datta P; Ozbolat V; O'Donnell A; Yeo M; Ozbolat IT
    Biomaterials; 2022 Dec; 291():121881. PubMed ID: 36335718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue.
    Kim EM; Lee YB; Kim SJ; Park J; Lee J; Kim SW; Park H; Shin H
    Acta Biomater; 2019 Dec; 100():158-172. PubMed ID: 31542503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Bioprinted Vascularized Tumour for Drug Testing.
    Han S; Kim S; Chen Z; Shin HK; Lee SY; Moon HE; Paek SH; Park S
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32340319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.