These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 37865968)
1. Binary Metal-Oxide Active Sites Derived from Cu-Doped MIL-88 with Enhanced Electroactivity for Nitrate Reduction. Li M; Li J; Huang J; Wu B; Chen F; Liu X Environ Sci Technol; 2023 Oct; 57(43):16653-16661. PubMed ID: 37865968 [TBL] [Abstract][Full Text] [Related]
2. Electrocatalytic Hydrogenation Boosts Reduction of Nitrate to Ammonia over Single-Atom Cu with Cu(I)-N Xue Y; Yu Q; Ma Q; Chen Y; Zhang C; Teng W; Fan J; Zhang WX Environ Sci Technol; 2022 Oct; 56(20):14797-14807. PubMed ID: 36175172 [TBL] [Abstract][Full Text] [Related]
3. Sulphur-Boosted Active Hydrogen on Copper for Enhanced Electrocatalytic Nitrate-to-Ammonia Selectivity. Xu Y; Cheng C; Zhu J; Zhang B; Wang Y; Yu Y Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202400289. PubMed ID: 38372474 [TBL] [Abstract][Full Text] [Related]
4. Constructing Cu-CuO heterostructured skin on Cu cubes to promote electrocatalytic ammonia production from nitrate wastewater. Zhao J; Shen Z; Yu J; Guo Y; Mushtaq MA; Ding Y; Song Z; Zhang W; Huang X; Li Y; Liu D; Cai X J Hazard Mater; 2022 Oct; 439():129653. PubMed ID: 35901633 [TBL] [Abstract][Full Text] [Related]
5. Cu Zhou B; Yu L; Zhang W; Liu X; Zhang H; Cheng J; Chen Z; Zhang H; Li M; Shi Y; Jia F; Huang Y; Zhang L; Ai Z Angew Chem Int Ed Engl; 2024 Jul; 63(31):e202406046. PubMed ID: 38771293 [TBL] [Abstract][Full Text] [Related]
6. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Zhang S; Wu J; Zheng M; Jin X; Shen Z; Li Z; Wang Y; Wang Q; Wang X; Wei H; Zhang J; Wang P; Zhang S; Yu L; Dong L; Zhu Q; Zhang H; Lu J Nat Commun; 2023 Jun; 14(1):3634. PubMed ID: 37337012 [TBL] [Abstract][Full Text] [Related]
7. Constructing Ru@C Zheng Y; Qin M; Yu X; Yao H; Zhang W; Xie G; Guo X Small; 2023 Jul; 19(30):e2302266. PubMed ID: 37178389 [TBL] [Abstract][Full Text] [Related]
8. Boosting Electrochemical Nitrate Reduction at Low Concentrations Through Simultaneous Electronic States Regulation and Proton Provision. Zhang W; Zhou Y; Zhu Y; Guo Y; Zhang B; Zhang LH; Li F; Yu F Small; 2024 Oct; 20(43):e2404792. PubMed ID: 38923291 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of ammonia synthesis via electrocatalytic reduction of low-concentration nitrate using co-doped MIL-101(Fe) nanostructured catalysts. Wang X; Wang D; Ma H; Wang G J Colloid Interface Sci; 2025 Jan; 677(Pt A):369-377. PubMed ID: 39096705 [TBL] [Abstract][Full Text] [Related]
10. Boosting Electrocatalytic Nitrate-to-Ammonia via Tuning of N-Intermediate Adsorption on a Zn-Cu Catalyst. Wu L; Feng J; Zhang L; Jia S; Song X; Zhu Q; Kang X; Xing X; Sun X; Han B Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202307952. PubMed ID: 37665252 [TBL] [Abstract][Full Text] [Related]
11. Enhancing Electrochemical Nitrate Reduction to Ammonia over Cu Nanosheets via Facet Tandem Catalysis. Fu Y; Wang S; Wang Y; Wei P; Shao J; Liu T; Wang G; Bao X Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303327. PubMed ID: 37119055 [TBL] [Abstract][Full Text] [Related]
12. Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate. Yuan J; Xing Z; Tang Y; Liu C ACS Appl Mater Interfaces; 2021 Nov; 13(44):52469-52478. PubMed ID: 34723479 [TBL] [Abstract][Full Text] [Related]
13. Dendritic copper oxide catalyst engineering weak-polarity Cu-O bond for high-efficiency nitrate electroreduction. Ma H; Yan J; Xu J; Chen P; Qi J; Ding Y; Zhang S; Lu L J Hazard Mater; 2024 May; 470():134261. PubMed ID: 38608589 [TBL] [Abstract][Full Text] [Related]
14. Building dual active sites Co Fu W; Hu Z; Du Y; Su P; Su Y; Zhang Q; Zhou M J Hazard Mater; 2022 Jul; 434():128887. PubMed ID: 35430458 [TBL] [Abstract][Full Text] [Related]
15. Dual-Site W-O-CoP Catalysts for Active and Selective Nitrate Conversion to Ammonia in a Broad Concentration Window. Chang Z; Meng G; Chen Y; Chen C; Han S; Wu P; Zhu L; Tian H; Kong F; Wang M; Cui X; Shi J Adv Mater; 2023 Aug; 35(32):e2304508. PubMed ID: 37344386 [TBL] [Abstract][Full Text] [Related]
16. Highly active electroreduction of nitrates to ammonia over a zeolitic imidazolium framework-derived Fe single-atom catalyst with sulfur-modified asymmetric active centers. Liu F; Li J; An N; Huang J; Liu X; Li M J Hazard Mater; 2024 Mar; 465():133484. PubMed ID: 38219591 [TBL] [Abstract][Full Text] [Related]
17. High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe Zhang S; Li M; Li J; Song Q; Liu X Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35101982 [TBL] [Abstract][Full Text] [Related]
18. 2D copper-iron bimetallic metal-organic frameworks for reduction of nitrate with boosted efficiency and ammonia selectivity. Ma Q; Xue Y; Zhang C; Chen Y; Teng W; Zhang H; Fan J J Environ Sci (China); 2025 Mar; 149():374-385. PubMed ID: 39181650 [TBL] [Abstract][Full Text] [Related]
19. Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. Zhao X; Li X; Zhang H; Chen X; Xu J; Yang J; Zhang H; Hu G J Hazard Mater; 2022 Feb; 424(Pt A):127319. PubMed ID: 34583155 [TBL] [Abstract][Full Text] [Related]
20. Molecular Engineering of Hydrogen-Bonded Organic Framework for Enhanced Nitrate Electroreduction to Ammonia. Zhai P; Wang C; Li Y; Jin D; Shang B; Chang Y; Liu W; Gao J; Hou J Nano Lett; 2024 Jul; 24(28):8687-8695. PubMed ID: 38973752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]