These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37866225)

  • 1. Depth profiling of residual stress distribution in surface treated metallic structures using nonlinear ultrasonics.
    Sampath S; Liu H; Tham ZW; Chen YF; Zhang L
    Ultrasonics; 2024 Feb; 137():107186. PubMed ID: 37866225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodology for Mapping the Residual Stress Field in Serviced Rails Using L
    Hwang YI; Lee H; Kim YI; Kim KB
    J Nondestr Eval; 2022; 41(3):63. PubMed ID: 36097513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Shot Peening on Residual Stress and Surface Roughness of AMS 5504 Stainless Steel Joints Welded Using the TIG Method.
    Bucior M; Kluz R; Trzepieciński T; Jurczak K; Kubit A; Ochał K
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
    Amura M; Meo M; Amerini F
    J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additively Manufactured 316L Stainless Steel Subjected to a Duplex Peening-PVD Coating Treatment.
    Bonnici L; Buhagiar J; Cassar G; Vella KA; Chen J; Zhang X; Huang Z; Zammit A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comprehensive Numerical Approach for Analyzing the Residual Stresses in AISI 301LN Stainless Steel Induced by Shot Peening.
    Zhou F; Jiang W; Du Y; Xiao C
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity.
    Thiele S; Kim JY; Qu J; Jacobs LJ
    Ultrasonics; 2014 Aug; 54(6):1470-5. PubMed ID: 24836962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue Limit of Custom 465 with Surface Strengthening Treatment.
    An G; Liu RJ; Yin GQ
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Residual Stress Measurement Conditions for a 2D Method Using X-ray Diffraction and Its Application for Stainless Steel Treated by Laser Cavitation Peening.
    Soyama H; Kuji C; Kuriyagawa T; Chighizola CR; Hill MR
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.
    Li Z; He J; Teng J; Wang Y
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the secondary shot in the double shot peening process on the residual compressive stress distribution of Ti-6Al-4V.
    Ongtrakulkij G; Khantachawana A; Kajornchaiyakul J; Kondoh K
    Heliyon; 2022 Jan; 8(1):e08758. PubMed ID: 35071817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening.
    Gujba AK; Medraj M
    Materials (Basel); 2014 Dec; 7(12):7925-7974. PubMed ID: 28788284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Laser Peening on Microstructural Changes in GTA-Welded 304L Stainless Steel.
    Yoo YR; Kim JS; Kim YS
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Laser Peening on the Corrosion Properties of 304L Stainless Steel.
    Yoo YR; Choi SH; Kim YS
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Maximum Residual Stress Prediction Technique for Shot-Peened Specimen Using Rayleigh Wave Dispersion Data Based on Convolutional Neural Network.
    Choi YW; Lee TG; Yeom YT; Kwon SD; Kim HH; Lee KY; Kim HJ; Song SJ
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Surface Layer Properties and Fatigue Life of a Workpiece Machined by Centrifugal Shot Peening and Burnishing.
    Skoczylas A; Zaleski K
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the directivity of Longitudinal Critically Refracted (LCR) waves.
    Pei N; Zhao B; Zhao X; Liu Z; Bond LJ
    Ultrasonics; 2021 May; 113():106359. PubMed ID: 33540234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the Acoustic Non-Linearity Parameter of Materials by Exciting Reversed-Phase Rayleigh Waves in Opposite Directions.
    Yan B; Song Y; Nie S; Yang M; Liu Z
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Conditions after LASER Shock Peening of Steel and Aluminum Alloys Using Ultrafast Laser Pulses.
    Schubnell J; Carl ER; Sarmast A; Hinterstein M; Preußner J; Seifert M; Kaufmann C; Rußbüldt P; Schulte J
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique.
    Xing X; Duan X; Sun X; Gong H; Wang L; Jiang F
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.