BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37866445)

  • 1. OsGSTU34, a Bz2-like anthocyanin-related glutathione transferase transporter, is essential for rice (Oryza sativa L.) organs coloration.
    Mackon E; Guo Y; Jeazet Dongho Epse Mackon GC; Ma Y; Yao Y; Luo D; Dai X; Zhao N; Lu Y; Jandan TH; Liu P
    Phytochemistry; 2024 Jan; 217():113896. PubMed ID: 37866445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational and Transcriptomic Analysis Unraveled
    Mackon E; Ma Y; Jeazet Dongho Epse Mackon GC; Usman B; Zhao Y; Li Q; Liu P
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33923742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Insights into Anthocyanin Pigmentation, Synthesis, Trafficking, and Regulatory Mechanisms in Rice (
    Mackon E; Jeazet Dongho Epse Mackon GC; Ma Y; Haneef Kashif M; Ali N; Usman B; Liu P
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33800105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves.
    Carletti G; Lucini L; Busconi M; Marocco A; Bernardi J
    Plant Physiol Biochem; 2013 Sep; 70():123-32. PubMed ID: 23774374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in Japanese gentian with the CRISPR/Cas9 system.
    Tasaki K; Yoshida M; Nakajima M; Higuchi A; Watanabe A; Nishihara M
    BMC Plant Biol; 2020 Aug; 20(1):370. PubMed ID: 32762648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative HPLC profiling and transcriptome analysis revealed insights into anthocyanin accumulation and key genes at three developmental stages of black rice (
    Mackon E; Jeazet Dongho Epse Mackon GC; Yao Y; Guo Y; Ma Y; Dai X; Jandan TH; Liu P
    Front Plant Sci; 2023; 14():1211326. PubMed ID: 37727854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinterpretation of anthocyanins biosynthesis in developing black rice seeds through gene expression analysis.
    Lee C; Lee YS; Hong HC; Hong WJ; Koh HJ; Jung KH
    PLoS One; 2023; 18(6):e0286539. PubMed ID: 37267255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring.
    Song J; Du L; Li L; Kalt W; Palmer LC; Fillmore S; Zhang Y; Zhang Z; Li X
    J Proteomics; 2015 Jun; 122():1-10. PubMed ID: 25818726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus.
    Cui Y; Fan J; Lu C; Ren J; Qi F; Huang H; Dai S
    Plant Sci; 2021 Dec; 313():111094. PubMed ID: 34763879
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Han L; Zhou L; Zou H; Yuan M; Wang Y
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade).
    Chhon S; Jeon J; Kim J; Park SU
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32054115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-Seq-Based Profiling of
    Xu R; Pan R; Zhang Y; Feng Y; Nath UK; Gan Y; Shi C; Akhter D
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation.
    Liu F; Yang Y; Gao J; Ma C; Bi Y
    PLoS One; 2018; 13(1):e0191406. PubMed ID: 29360842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LhGST is an anthocyanin-related glutathione S-transferase gene in Asiatic hybrid lilies (Lilium spp.).
    Cao Y; Xu L; Xu H; Yang P; He G; Tang Y; Qi X; Song M; Ming J
    Plant Cell Rep; 2021 Jan; 40(1):85-95. PubMed ID: 33210154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.
    Chen L; Huang Y; Xu M; Cheng Z; Zheng J
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29244752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation patterns of anthocyanin and γ-oryzanol during black rice grain development.
    Thapa M; Liu L; Barkla BJ; Kretzschmar T; Rogiers SY; Rose TJ
    PLoS One; 2024; 19(5):e0302745. PubMed ID: 38776277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice.
    Yang X; Wang J; Xia X; Zhang Z; He J; Nong B; Luo T; Feng R; Wu Y; Pan Y; Xiong F; Zeng Y; Chen C; Guo H; Xu Z; Li D; Deng G
    Plant J; 2021 Jul; 107(1):198-214. PubMed ID: 33884679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco.
    Pérez-Díaz JR; Pérez-Díaz J; Madrid-Espinoza J; González-Villanueva E; Moreno Y; Ruiz-Lara S
    Plant Mol Biol; 2016 Jan; 90(1-2):63-76. PubMed ID: 26497001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional chromogen gene C from wild rice is involved in a different anthocyanin biosynthesis pathway in indica and japonica.
    Qiao W; Wang Y; Xu R; Yang Z; Sun Y; Su L; Zhang L; Wang J; Huang J; Zheng X; Liu S; Tian Y; Chen L; Liu X; Lan J; Yang Q
    Theor Appl Genet; 2021 May; 134(5):1531-1543. PubMed ID: 33688983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases.
    Alfenito MR; Souer E; Goodman CD; Buell R; Mol J; Koes R; Walbot V
    Plant Cell; 1998 Jul; 10(7):1135-49. PubMed ID: 9668133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.