These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37866493)

  • 21. Insight to maturity during biogas residue from food waste composting in terms of multivariable interaction.
    Chen P; Zhang L; Li Y; Liang J
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71785-71795. PubMed ID: 35604592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolution of compost stability and maturity during the full-scale treatment of the organic fraction of municipal solid waste.
    Cesaro A; Conte A; Belgiorno V; Siciliano A; Guida M
    J Environ Manage; 2019 Feb; 232():264-270. PubMed ID: 30476688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oyster shell powder for Pb(II) immobilization in both aquatic and sediment environments.
    Zhong G; Liu Y; Tang Y
    Environ Geochem Health; 2021 May; 43(5):1891-1902. PubMed ID: 33175300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of calcinated oyster shell powder on growth, yield, spawn run, and primordial formation of king oyster mushroom (Pleurotus eryngii).
    Choi UK; Lee OH; Kim YC
    Molecules; 2011 Mar; 16(3):2313-22. PubMed ID: 21394076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials.
    Lee CH; Lee DK; Ali MA; Kim PJ
    Waste Manag; 2008 Dec; 28(12):2702-8. PubMed ID: 18294833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modified oyster shell powder with iron (II) sulfate heptahydrate to improve arsenic uptake in solution and in contaminated soils.
    Torres-Quiroz C; Dissanayake J; Park J
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37029-37038. PubMed ID: 36564695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rationalizing mineral gypsum use through microbially enriched municipal solid waste compost for amelioration and regaining productivity potential of degraded alkali soils.
    Singh YP; Arora S; Mishra VK; Singh AK
    Sci Rep; 2023 Jul; 13(1):11816. PubMed ID: 37479732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of Oyster Shell Waste to Amendment for Immobilising Cadmium and Arsenic in Agricultural Soil.
    Bi D; Yuan G; Wei J; Xiao L; Feng L
    Bull Environ Contam Toxicol; 2020 Aug; 105(2):277-282. PubMed ID: 32556688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine-learning intervention progress in the field of organic waste composting: Simulation, prediction, optimization, and challenges.
    Huang LT; Hou JY; Liu HT
    Waste Manag; 2024 Apr; 178():155-167. PubMed ID: 38401429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oyster shell as substitute for aggregate in mortar.
    Yoon H; Park S; Lee K; Park J
    Waste Manag Res; 2004 Jun; 22(3):158-70. PubMed ID: 15253499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins.
    Arrigoni JP; Paladino G; Garibaldi LA; Laos F
    Waste Manag; 2018 Jun; 76():284-293. PubMed ID: 29571570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on the quality and stability of compost through a Demo Compost Plant.
    Hasan KM; Sarkar G; Alamgir M; Bari QH; Haedrich G
    Waste Manag; 2012 Nov; 32(11):2046-55. PubMed ID: 22763048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Moisture migration driven by the electric field causes the directional differentiation of compost maturity.
    Fu T; Shangguan H; Shen C; Mi H; Wu J; Li L; Tang J; Zeng RJ; Zhou S
    Sci Total Environ; 2022 Mar; 811():152415. PubMed ID: 34923006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.
    Nakasaki K; Marui T
    Waste Manag Res; 2011 Jun; 29(6):574-81. PubMed ID: 21216925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resource recovery of food waste through continuous thermophilic in-vessel composting.
    Waqas M; Almeelbi T; Nizami AS
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5212-5222. PubMed ID: 28577144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metagenomics analysis revealed the coupling of lignin degradation with humus formation mediated via shell powder during composting.
    Ma L; Sun R; Yang H; Li J; Wen X; Cao Z; Zhou Y; Fu M; Li Q
    Bioresour Technol; 2022 Nov; 363():127949. PubMed ID: 36108576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of sugar beet pulp and paper waste as bulking agents on physical, chemical, and microbial properties during green waste composting.
    Zhang L; Sun X
    Bioresour Technol; 2018 Nov; 267():182-191. PubMed ID: 30021150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ generated oxygen distribution causes maturity differentiation during electrolytic oxygen aerobic composting.
    Shangguan H; Fu T; Shen C; Mi H; Wei J; Tang J; Zhou S
    Sci Total Environ; 2022 Dec; 850():157939. PubMed ID: 35952878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The recycling of oyster shells: an environmental analysis using Life Cycle Assessment.
    de Alvarenga RA; Galindro BM; Helpa Cde F; Soares SR
    J Environ Manage; 2012 Sep; 106():102-9. PubMed ID: 22579725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils.
    Chen Y; Xu J; Lv Z; Xie R; Huang L; Jiang J
    J Environ Manage; 2018 Jul; 217():646-653. PubMed ID: 29649736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.