BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37866662)

  • 1. S-adenosylmethionine treatment affects histone methylation in prostate cancer cells.
    Mathes A; Duman MB; Neumann A; Dobreva G; Schmidt T
    Gene; 2024 Jan; 893():147915. PubMed ID: 37866662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of prostate cancer cells with S-adenosylmethionine leads to genome-wide alterations in transcription profiles.
    Schmidt T; Leha A; Salinas-Riester G
    Gene; 2016 Dec; 595(2):161-167. PubMed ID: 27688072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression.
    Ngollo M; Lebert A; Daures M; Judes G; Rifai K; Dubois L; Kemeny JL; Penault-Llorca F; Bignon YJ; Guy L; Bernard-Gallon D
    BMC Cancer; 2017 Apr; 17(1):261. PubMed ID: 28403887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-adenosylmethionine mediates inhibition of inflammatory response and changes in DNA methylation in human macrophages.
    Pfalzer AC; Choi SW; Tammen SA; Park LK; Bottiglieri T; Parnell LD; Lamon-Fava S
    Physiol Genomics; 2014 Sep; 46(17):617-23. PubMed ID: 25180283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological methyl group donors block skeletal metastasis in vitro and in vivo.
    Shukeir N; Stefanska B; Parashar S; Chik F; Arakelian A; Szyf M; Rabbani SA
    Br J Pharmacol; 2015 Jun; 172(11):2769-81. PubMed ID: 25631332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-Adenosylmethionine affects ERK1/2 and STAT3 pathway in androgen-independent prostate cancer cells.
    Schmidt T
    Mol Biol Rep; 2022 Jun; 49(6):4805-4817. PubMed ID: 35303200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered DNA methylation landscapes of polycomb-repressed loci are associated with prostate cancer progression and ERG oncogene expression in prostate cancer.
    Kron K; Trudel D; Pethe V; Briollais L; Fleshner N; van der Kwast T; Bapat B
    Clin Cancer Res; 2013 Jul; 19(13):3450-61. PubMed ID: 23549870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of H3K4me3 and H3K27me3 modifications due to Lr28 for leaf rust resistance in bread wheat (Triticum aestivum).
    Saripalli G; Singh K; Gautam T; Kumar S; Raghuvanshi S; Prasad P; Jain N; Sharma PK; Balyan HS; Gupta PK
    Plant Mol Biol; 2020 Sep; 104(1-2):113-136. PubMed ID: 32627097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth.
    Da MX; Zhang YB; Yao JB; Duan YX
    Braz J Med Biol Res; 2014 Dec; 47(12):1021-8. PubMed ID: 25387667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global and region-specific post-transcriptional and post-translational modifications of bisphenol A in human prostate cancer cells.
    Fatma Karaman E; Caglayan M; Sancar-Bas S; Ozal-Coskun C; Arda-Pirincci P; Ozden S
    Environ Pollut; 2019 Dec; 255(Pt 2):113318. PubMed ID: 31610501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo.
    Shukeir N; Pakneshan P; Chen G; Szyf M; Rabbani SA
    Cancer Res; 2006 Sep; 66(18):9202-10. PubMed ID: 16982764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-Adenosylmethionine Treatment of Colorectal Cancer Cell Lines Alters DNA Methylation, DNA Repair and Tumor Progression-Related Gene Expression.
    Zsigrai S; Kalmár A; Nagy ZB; Barták BK; Valcz G; Szigeti KA; Galamb O; Dankó T; Sebestyén A; Barna G; Szabó V; Pipek O; Medgyes-Horváth A; Csabai I; Tulassay Z; Igaz P; Takács I; Molnár B
    Cells; 2020 Aug; 9(8):. PubMed ID: 32784836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer.
    Sasidharan Nair V; Toor SM; Taha RZ; Shaath H; Elkord E
    Clin Epigenetics; 2018 Aug; 10(1):104. PubMed ID: 30081950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairment of IGF2 gene expression in prostate cancer is triggered by epigenetic dysregulation of IGF2-DMR0 and its interaction with KLF4.
    Schagdarsurengin U; Lammert A; Schunk N; Sheridan D; Gattenloehner S; Steger K; Wagenlehner F; Dansranjavin T
    Cell Commun Signal; 2017 Oct; 15(1):40. PubMed ID: 29017567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA.
    Statham AL; Robinson MD; Song JZ; Coolen MW; Stirzaker C; Clark SJ
    Genome Res; 2012 Jun; 22(6):1120-7. PubMed ID: 22466171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.
    Ke XS; Qu Y; Rostad K; Li WC; Lin B; Halvorsen OJ; Haukaas SA; Jonassen I; Petersen K; Goldfinger N; Rotter V; Akslen LA; Oyan AM; Kalland KH
    PLoS One; 2009; 4(3):e4687. PubMed ID: 19262738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effect of S-adenosylmethionine on the growth of human gastric cancer cells in vivo and in vitro.
    Zhao Y; Li JS; Guo MZ; Feng BS; Zhang JP
    Chin J Cancer; 2010 Aug; 29(8):752-60. PubMed ID: 20663323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The association between histone 3 lysine 27 trimethylation (H3K27me3) and prostate cancer: relationship with clinicopathological parameters.
    Ngollo M; Lebert A; Dagdemir A; Judes G; Karsli-Ceppioglu S; Daures M; Kemeny JL; Penault-Llorca F; Boiteux JP; Bignon YJ; Guy L; Bernard-Gallon D
    BMC Cancer; 2014 Dec; 14():994. PubMed ID: 25535400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Regulation of Histone Methylation by mTOR Complexes Controls Glioblastoma Tumor Cell Growth via EZH2 and SAM.
    Harachi M; Masui K; Honda H; Muragaki Y; Kawamata T; Cavenee WK; Mischel PS; Shibata N
    Mol Cancer Res; 2020 Aug; 18(8):1142-1152. PubMed ID: 32366675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic regulation of EFEMP1 in prostate cancer: biological relevance and clinical potential.
    Almeida M; Costa VL; Costa NR; Ramalho-Carvalho J; Baptista T; Ribeiro FR; Paulo P; Teixeira MR; Oliveira J; Lothe RA; Lind GE; Henrique R; Jerónimo C
    J Cell Mol Med; 2014 Nov; 18(11):2287-97. PubMed ID: 25211630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.