These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37867296)

  • 1. Dynamic Properties of Adsorption Layers of κ-Casein Fibrils.
    Milyaeva OY; Akentiev AV; Bykov AG; Loglio G; Miller R; Portnaya I; Rafikova AR; Noskov BA
    Langmuir; 2023 Oct; 39(43):15268-15274. PubMed ID: 37867296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Surface Properties of α-Lactalbumin Fibril Dispersions.
    Noskov B; Loglio G; Miller R; Milyaeva O; Panaeva M; Bykov A
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spread and adsorbed layers of protein fibrils at water -air interface.
    Noskov BA; Akentiev AV; Bykov AG; Loglio G; Miller R; Milyaeva OY
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112942. PubMed ID: 36265319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption layer formation in dispersions of protein aggregates.
    Noskov BA; Bykov AG; Gochev G; Lin SY; Loglio G; Miller R; Milyaeva OY
    Adv Colloid Interface Sci; 2020 Feb; 276():102086. PubMed ID: 31895989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein conformational transitions at the liquid-gas interface as studied by dilational surface rheology.
    Noskov BA
    Adv Colloid Interface Sci; 2014 Apr; 206():222-38. PubMed ID: 24238394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of denaturing agents on surface properties of myoglobin solutions.
    Krycki MM; Lin SY; Loglio G; Michailov AV; Miller R; Noskov BA
    Colloids Surf B Biointerfaces; 2021 Jun; 202():111657. PubMed ID: 33684687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-Casein adsorption at the silicon oxide--aqueous solution interface.
    Tiberg F; Nylander T; Su TJ; Lu JR; Thomas RK
    Biomacromolecules; 2001; 2(3):844-50. PubMed ID: 11710040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of protein/surfactant adsorption layer as studied by dilational surface rheology.
    Noskov BA; Krycki MM
    Adv Colloid Interface Sci; 2017 Sep; 247():81-99. PubMed ID: 28716186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dissociated form of kappa-casein is the precursor to its amyloid fibril formation.
    Ecroyd H; Thorn DC; Liu Y; Carver JA
    Biochem J; 2010 Jul; 429(2):251-60. PubMed ID: 20441567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic properties of the layers of cupin-1.1 aggregates at the air/water interface.
    Isakov NA; Belousov MV; Nizhnikov AA; Noskov BA
    Biophys Chem; 2024 Apr; 307():107166. PubMed ID: 38232602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.
    Maestro A; Kotsmar C; Javadi A; Miller R; Ortega F; Rubio RG
    J Phys Chem B; 2012 Apr; 116(16):4898-907. PubMed ID: 22475110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the ginsenosides with κ-casein and their effects on amyloid fibril formation by the protein: Multi-spectroscopic approaches.
    Chen F; Wang Y; Yang M; Yin J; Meng Q; Bu F; Sun D; Liu J
    J Photochem Photobiol B; 2016 Jul; 160():306-17. PubMed ID: 27163725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology and phase behavior of dense casein micelle dispersions.
    Bouchoux A; Debbou B; Gésan-Guiziou G; Famelart MH; Doublier JL; Cabane B
    J Chem Phys; 2009 Oct; 131(16):165106. PubMed ID: 19894981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein.
    Liu J; Dehle FC; Liu Y; Bahraminejad E; Ecroyd H; Thorn DC; Carver JA
    J Agric Food Chem; 2016 Feb; 64(6):1335-43. PubMed ID: 26807595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrosorption of pectin onto casein micelles.
    Tuinier R; Rolin C; de Kruif CG
    Biomacromolecules; 2002; 3(3):632-8. PubMed ID: 12005537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine oxidation enhances κ-casein amyloid fibril formation.
    Koudelka T; Dehle FC; Musgrave IF; Hoffmann P; Carver JA
    J Agric Food Chem; 2012 Apr; 60(16):4144-55. PubMed ID: 22443319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Fibril Formation of κ-Casein by External Stimuli within Multilayer Thin Films.
    Lee JH; Hwang HJ; Bhak G; Jang Y; Paik SR; Char K
    ACS Macro Lett; 2013 Aug; 2(8):688-693. PubMed ID: 35606953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.