These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37867383)

  • 1. Recurrence Quantification Analysis of Crowd Sound Dynamics.
    Proksch S; Reeves M; Gee K; Transtrum M; Kello C; Balasubramaniam R
    Cogn Sci; 2023 Oct; 47(10):e13363. PubMed ID: 37867383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination dynamics of multi-agent interaction in a musical ensemble.
    Proksch S; Reeves M; Spivey M; Balasubramaniam R
    Sci Rep; 2022 Jan; 12(1):421. PubMed ID: 35013620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of crowd density on the sound environment of commercial pedestrian streets.
    Meng Q; Kang J
    Sci Total Environ; 2015 Apr; 511():249-58. PubMed ID: 25546463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction model of crowd noise in large waiting halls.
    Liu H; Ma H; Wang C; Kang J
    J Acoust Soc Am; 2022 Oct; 152(4):2001. PubMed ID: 36319250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temporary open-air markets on the sound environment and acoustic perception based on the crowd density characteristics.
    Meng Q; Sun Y; Kang J
    Sci Total Environ; 2017 Dec; 601-602():1488-1495. PubMed ID: 28605866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Timbre Toolbox: extracting audio descriptors from musical signals.
    Peeters G; Giordano BL; Susini P; Misdariis N; McAdams S
    J Acoust Soc Am; 2011 Nov; 130(5):2902-16. PubMed ID: 22087919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Acoustic Signal Processing Techniques for Enhanced Bowel Sound Analysis.
    Allwood G; Du X; Webberley KM; Osseiran A; Marshall BJ
    IEEE Rev Biomed Eng; 2019; 12():240-253. PubMed ID: 30307875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emotional sounds of crowds: spectrogram-based analysis using deep learning.
    Franzoni V; Biondi G; Milani A
    Multimed Tools Appl; 2020; 79(47-48):36063-36075. PubMed ID: 32837250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust weighted averaging accounts for recruitment into collective motion in human crowds.
    Wirth TD; Warren WH
    Front Appl Math Stat; 2021 Nov; 7():. PubMed ID: 35079598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Audio-visual multi-modality driven hybrid feature learning model for crowd analysis and classification.
    Swathi HY; Shivakumar G
    Math Biosci Eng; 2023 May; 20(7):12529-12561. PubMed ID: 37501454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound texture recognition through dynamical systems modeling of empirical mode decomposition.
    Van Nort D; Braasch J; Oliveros P
    J Acoust Soc Am; 2012 Oct; 132(4):2734-44. PubMed ID: 23039465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustics of snoring and automatic snore sound detection in children.
    Çavuşoğlu M; Poets CF; Urschitz MS
    Physiol Meas; 2017 Oct; 38(11):1919-1938. PubMed ID: 28871074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceiving crowd attention: ensemble perception of a crowd's gaze.
    Sweeny TD; Whitney D
    Psychol Sci; 2014 Oct; 25(10):1903-13. PubMed ID: 25125428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal component analysis for emergent acoustic signal detection with supporting simulation results.
    Hoppe E; Roan M
    J Acoust Soc Am; 2011 Oct; 130(4):1962-73. PubMed ID: 21973351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation and assessment of acoustic contamination of electrophysiological brain signals during speech production and sound perception.
    Roussel P; Godais GL; Bocquelet F; Palma M; Hongjie J; Zhang S; Giraud AL; Mégevand P; Miller K; Gehrig J; Kell C; Kahane P; Chabardés S; Yvert B
    J Neural Eng; 2020 Oct; 17(5):056028. PubMed ID: 33055383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate.
    Haumann NT; Lumaca M; Kliuchko M; Santacruz JL; Vuust P; Brattico E
    Brain Res; 2021 Mar; 1754():147248. PubMed ID: 33417893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility of Voice Parameters: The Effect of Room Acoustics and Microphones.
    Bottalico P; Codino J; Cantor-Cutiva LC; Marks K; Nudelman CJ; Skeffington J; Shrivastav R; Jackson-Menaldi MC; Hunter EJ; Rubin AD
    J Voice; 2020 May; 34(3):320-334. PubMed ID: 30471944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of fetal exposure to external loud noise using a sheep model: quantification of in utero acoustic transmission across the human audio range.
    Gélat P; David AL; Haqhenas SR; Henriques J; Thibaut de Maisieres A; White T; Jauniaux E
    Am J Obstet Gynecol; 2019 Oct; 221(4):343.e1-343.e11. PubMed ID: 31152712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of coupling on bubble fragmentation acoustics.
    Czerski H; Deane GB
    J Acoust Soc Am; 2011 Jan; 129(1):74-84. PubMed ID: 21302989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.