These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37867618)

  • 1. Embodied bidirectional simulation of a spiking cortico-basal ganglia-cerebellar-thalamic brain model and a mouse musculoskeletal body model distributed across computers including the supercomputer Fugaku.
    Kuniyoshi Y; Kuriyama R; Omura S; Gutierrez CE; Sun Z; Feldotto B; Albanese U; Knoll AC; Yamada T; Hirayama T; Morin FO; Igarashi J; Doya K; Yamazaki T
    Front Neurorobot; 2023; 17():1269848. PubMed ID: 37867618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.
    Falotico E; Vannucci L; Ambrosano A; Albanese U; Ulbrich S; Vasquez Tieck JC; Hinkel G; Kaiser J; Peric I; Denninger O; Cauli N; Kirtay M; Roennau A; Klinker G; Von Arnim A; Guyot L; Peppicelli D; Martínez-Cañada P; Ros E; Maier P; Weber S; Huber M; Plecher D; Röhrbein F; Deser S; Roitberg A; van der Smagt P; Dillman R; Levi P; Laschi C; Knoll AC; Gewaltig MO
    Front Neurorobot; 2017; 11():2. PubMed ID: 28179882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual deep brain stimulation: Multiscale co-simulation of a spiking basal ganglia model and a whole-brain mean-field model with The Virtual Brain.
    Meier JM; Perdikis D; Blickensdörfer A; Stefanovski L; Liu Q; Maith O; Dinkelbach HÜ; Baladron J; Hamker FH; Ritter P
    Exp Neurol; 2022 Aug; 354():114111. PubMed ID: 35569510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Integrated Neurorobotics Model of the Cerebellar-Basal Ganglia Circuitry.
    Pimentel JM; Moioli RC; De Araujo MFP; Vargas PA
    Int J Neural Syst; 2023 Nov; 33(11):2350059. PubMed ID: 37791495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.
    Igarashi J; Yamaura H; Yamazaki T
    Front Neuroinform; 2019; 13():71. PubMed ID: 31849631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-scale Brain Simulation via Supercomputer: A Case Study on the Cerebellum.
    Yamazaki T; Igarashi J; Yamaura H
    Neuroscience; 2021 May; 462():235-246. PubMed ID: 33482329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Drug screening for COVID-19 using supercomputer "Fugaku"].
    Okuno Y
    Nihon Yakurigaku Zasshi; 2022; 157(2):111-114. PubMed ID: 35228441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of a Human-Scale Cerebellar Network Model on the K Computer.
    Yamaura H; Igarashi J; Yamazaki T
    Front Neuroinform; 2020; 14():16. PubMed ID: 32317955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.
    Igarashi J; Shouno O; Fukai T; Tsujino H
    Neural Netw; 2011 Nov; 24(9):950-60. PubMed ID: 21764258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.
    Dura-Bernal S; Zhou X; Neymotin SA; Przekwas A; Francis JT; Lytton WW
    Front Neurorobot; 2015; 9():13. PubMed ID: 26635598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast digital simulation of spiking neural networks and neuromorphic integration with SPIKELAB.
    Grassmann C; Anlauf JK
    Int J Neural Syst; 1999 Oct; 9(5):473-8. PubMed ID: 10630480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of potentially converging inputs to the rostral ventral thalamic nuclei of the cat.
    Anderson ME; DeVito JL
    Exp Brain Res; 1987; 68(2):260-76. PubMed ID: 3691701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.
    Geminiani A; Casellato C; Antonietti A; D'Angelo E; Pedrocchi A
    Int J Neural Syst; 2018 Jun; 28(5):1750017. PubMed ID: 28264639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning.
    Chersi F; Mirolli M; Pezzulo G; Baldassarre G
    Neural Netw; 2013 May; 41():212-24. PubMed ID: 23266482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neurophysiological correlates of motor tics following focal striatal disinhibition.
    McCairn KW; Bronfeld M; Belelovsky K; Bar-Gad I
    Brain; 2009 Aug; 132(Pt 8):2125-38. PubMed ID: 19506070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QuEST and High Performance Simulation of Quantum Computers.
    Jones T; Brown A; Bush I; Benjamin SC
    Sci Rep; 2019 Jul; 9(1):10736. PubMed ID: 31341200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome.
    Worbe Y; Marrakchi-Kacem L; Lecomte S; Valabregue R; Poupon F; Guevara P; Tucholka A; Mangin JF; Vidailhet M; Lehericy S; Hartmann A; Poupon C
    Brain; 2015 Feb; 138(Pt 2):472-82. PubMed ID: 25392196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.
    Caligiore D; Mannella F; Arbib MA; Baldassarre G
    PLoS Comput Biol; 2017 Mar; 13(3):e1005395. PubMed ID: 28358814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.