BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37867654)

  • 1. Experimental Investigation of the Impact of Particle Size on Its Distribution within a Horizontal Wellbore.
    Alajmei S; Budiman O; Aljawad MS
    ACS Omega; 2023 Oct; 8(41):38733-38747. PubMed ID: 37867654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proppant Distribution Prediction between Perforation Clusters Using Fresh Water in a Horizontal Wellbore.
    Alajmei S
    ACS Omega; 2023 May; 8(21):19016-19023. PubMed ID: 37273590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Prediction of the Proppant Distribution in a Hydraulically Fractured Stage.
    Alajmei S
    ACS Omega; 2023 Oct; 8(40):37080-37089. PubMed ID: 37841146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Investigation on the Fracture Conductivity Behavior of Quartz Sand and Ceramic Mixed Proppants.
    Sun H; He B; Xu H; Zhou F; Zhang M; Li H; Yin G; Chen S; Xu X; Li B
    ACS Omega; 2022 Mar; 7(12):10243-10254. PubMed ID: 35382273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions.
    Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T
    ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation on fracturing effects in hydraulic sand fracturing with acoustic emission and 3d laser scanning.
    Zhang S; Wang C; Zhu G; Gao G; Zhou H
    Sci Rep; 2023 Jul; 13(1):11539. PubMed ID: 37460604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Experimental Study of Fracture Conductivity of Carbonate Rocks under Different Stimulation Types.
    Xiao H; Xia X; Wang C; Tan X; Zhang H
    ACS Omega; 2023 Dec; 8(51):49175-49190. PubMed ID: 38162798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Study on the Backflow Mechanism of Proppants in Induced Fractures and Fiber Sand Control Under the Condition of Large-Scale and Fully Measurable Flow Field.
    Chen Y; Sang Y; Guo J; Yang J; Chen W; Tang B; Feng F; Gou X; Zhang Y
    ACS Omega; 2023 Nov; 8(45):42467-42478. PubMed ID: 38024756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proppant Settlement and Long-Term Conductivity Calculation in Complex Fractures.
    Wang X; Zhang X; Zhang M; Zhang Q; Dong P; Ding H; Liu X
    ACS Omega; 2024 Mar; 9(11):12789-12800. PubMed ID: 38524481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multiwalled Carbon Nanotube-Based Polyurethane Nanocomposite-Coated Sand/Proppant for Improved Mechanical Strength and Flowback Control in Hydraulic Fracturing Applications.
    Alzanam AAA; Ishtiaq U; Muhsan AS; Mohamed NM
    ACS Omega; 2021 Aug; 6(32):20768-20778. PubMed ID: 34423185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cause Analysis and Preventive Measures for Sand Production in Gas Wells of Sulige Gas Field.
    Wen Y; Liu L; Huang Y; Liu H; Sui M
    ACS Omega; 2023 Aug; 8(33):30590-30597. PubMed ID: 37636915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Proppant Settling Velocity in Fiber-Containing Fracturing Fluids.
    Bai Z; Li M
    ACS Omega; 2023 Sep; 8(35):31857-31869. PubMed ID: 37692221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a self-suspending ultra-low density proppant.
    Luo Z; Li J; Zhao L; Zhang N; Chen X; Miao W; Chen W; Liang C
    RSC Adv; 2021 Oct; 11(52):33083-33092. PubMed ID: 35493584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Modeling of Foam Carrying Sand Transport in Multifactor Horizontal Wells.
    Yu Z; Yang C; Cheng P; Wang H; Zhang Y; Wang C
    ACS Omega; 2024 Apr; 9(17):18777-18785. PubMed ID: 38708220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raw material recovery from hydraulic fracturing residual solid waste with implications for sustainability and radioactive waste disposal.
    Ajemigbitse MA; Cannon FS; Klima MS; Furness JC; Wunz C; Warner NR
    Environ Sci Process Impacts; 2019 Feb; 21(2):308-323. PubMed ID: 30382267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique.
    Quosay AA; Knez D; Ziaja J
    PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-Scale Study of Wettability Alteration and Fluid Flow in Propped Fractures of Ultra-Tight Carbonates.
    Elkhatib O; Xie Y; Mohamed A; Arshadi M; Piri M; Goual L
    Langmuir; 2023 Feb; 39(5):1870-1884. PubMed ID: 36693109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation of Proppant Transport in Major and Branching Fractures Based on CFD-DEM.
    Zuo L; Li X; Han Z; You Q; Liu X
    ACS Omega; 2024 Mar; 9(11):13163-13171. PubMed ID: 38524476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation and Performance Evaluation of Modified Viscoelastic Surfactant (VES) as a New Thickening Fracturing Fluid.
    Chieng ZH; Mohyaldinn ME; Hassan AM; Bruining H
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32629958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Community airborne particulate matter from mining for sand used as hydraulic fracturing proppant.
    Peters TM; O'Shaughnessy PT; Grant R; Altmaier R; Swanton E; Falk J; Osterberg D; Parker E; Wyland NG; Sousan S; Stark AL; Thorne PS
    Sci Total Environ; 2017 Dec; 609():1475-1482. PubMed ID: 28800690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.