These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37867953)

  • 1. Deep learning enables stochastic optical reconstruction microscopy-like superresolution image reconstruction from conventional microscopy.
    Xu L; Kan S; Yu X; Liu Y; Fu Y; Peng Y; Liang Y; Cen Y; Zhu C; Jiang W
    iScience; 2023 Nov; 26(11):108145. PubMed ID: 37867953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angular reconstitution-based 3D reconstructions of nanomolecular structures from superresolution light-microscopy images.
    Salas D; Le Gall A; Fiche JB; Valeri A; Ke Y; Bron P; Bellot G; Nollmann M
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):9273-9278. PubMed ID: 28811371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blind sparse inpainting reveals cytoskeletal filaments with sub-Nyquist localization.
    Wang Y; Jia S; Zhang HF; Kim D; Babcock H; Zhuang X; Ying L
    Optica; 2017 Oct; 4(10):1277-1284. PubMed ID: 30320156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy.
    Hajj B; Wisniewski J; El Beheiry M; Chen J; Revyakin A; Wu C; Dahan M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17480-5. PubMed ID: 25422417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widely accessible method for superresolution fluorescence imaging of living systems.
    Dedecker P; Mo GC; Dertinger T; Zhang J
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10909-14. PubMed ID: 22711840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging.
    Bates M; Jones SA; Zhuang X
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):498-520. PubMed ID: 23734025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation.
    Cheng T; Chen D; Yu B; Niu H
    Biomed Opt Express; 2017 May; 8(5):2445-2457. PubMed ID: 28663883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unified resolution bounds for conventional and stochastic localization fluorescence microscopy.
    Mukamel EA; Schnitzer MJ
    Phys Rev Lett; 2012 Oct; 109(16):168102. PubMed ID: 23215134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superresolution microscopy for microbiology.
    Coltharp C; Xiao J
    Cell Microbiol; 2012 Dec; 14(12):1808-18. PubMed ID: 22947061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate construction of photoactivated localization microscopy (PALM) images for quantitative measurements.
    Coltharp C; Kessler RP; Xiao J
    PLoS One; 2012; 7(12):e51725. PubMed ID: 23251611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.
    Tam J; Merino D
    J Neurochem; 2015 Nov; 135(4):643-58. PubMed ID: 26222552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FDU-Net: Deep Learning-Based Three-Dimensional Diffuse Optical Image Reconstruction.
    Deng B; Gu H; Zhu H; Chang K; Hoebel KV; Patel JB; Kalpathy-Cramer J; Carp SA
    IEEE Trans Med Imaging; 2023 Aug; 42(8):2439-2450. PubMed ID: 37028063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development in the STORM.
    Kamiyama D; Huang B
    Dev Cell; 2012 Dec; 23(6):1103-10. PubMed ID: 23237944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.
    Burnette DT; Sengupta P; Dai Y; Lippincott-Schwartz J; Kachar B
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21081-6. PubMed ID: 22167805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryogenic superresolution correlative light and electron microscopy on the frontier of subcellular imaging.
    Tian B; Xu X; Xue Y; Ji W; Xu T
    Biophys Rev; 2021 Dec; 13(6):1163-1171. PubMed ID: 35059034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Localization Microscopy of Subcellular Protein Distribution in Neurons.
    Willems J; Westra M; MacGillavry HD
    Methods Mol Biol; 2022; 2440():271-288. PubMed ID: 35218545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approaches in renal microscopy: volumetric imaging and superresolution microscopy.
    Kim AH; Suleiman H; Shaw AS
    Curr Opin Nephrol Hypertens; 2016 May; 25(3):159-67. PubMed ID: 27023834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pushing the limits of low-cost ultra-low-field MRI by dual-acquisition deep learning 3D superresolution.
    Lau V; Xiao L; Zhao Y; Su S; Ding Y; Man C; Wang X; Tsang A; Cao P; Lau GKK; Leung GKK; Leong ATL; Wu EX
    Magn Reson Med; 2023 Aug; 90(2):400-416. PubMed ID: 37010491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach.
    Chacko JV; Zanacchi FC; Diaspro A
    Cytoskeleton (Hoboken); 2013 Nov; 70(11):729-40. PubMed ID: 24027190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying superresolution localization-based microscopy to neurons.
    Zhong H
    Synapse; 2015 May; 69(5):283-94. PubMed ID: 25648102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.