These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37868191)

  • 1. Premotor and Posterior Parietal Cortex Activity is Increased for Slow, as well as Fast Walking Poststroke: An fNIRS Study.
    Lim SB; Peters S; Yang CL; Boyd LA; Liu-Ambrose T; Eng JJ
    Neural Plast; 2023; 2023():2403175. PubMed ID: 37868191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-dependent Brain Activation of the Frontal and Parietal Regions During Walking After Stroke - An fNIRS Study.
    Lim SB; Yang CL; Peters S; Liu-Ambrose T; Boyd LA; Eng JJ
    Front Neurol; 2022; 13():904722. PubMed ID: 35928123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age differences in brain activity in dorsolateral prefrontal cortex and supplementary motor areas during three different walking speed tasks.
    Lin CC; Bair WN; Willson J
    Hum Mov Sci; 2022 Oct; 85():102982. PubMed ID: 35917715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faster Walking Speeds Require Greater Activity from the Primary Motor Cortex in Older Adults Compared to Younger Adults.
    Alcock L; Vitório R; Stuart S; Rochester L; Pantall A
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study.
    Suzuki M; Miyai I; Ono T; Oda I; Konishi I; Kochiyama T; Kubota K
    Neuroimage; 2004 Nov; 23(3):1020-6. PubMed ID: 15528102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical control of normal gait and precision stepping: an fNIRS study.
    Koenraadt KL; Roelofsen EG; Duysens J; Keijsers NL
    Neuroimage; 2014 Jan; 85 Pt 1():415-22. PubMed ID: 23631980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive, yet not inactive: robotic exoskeleton walking increases cortical activation dependent on task.
    Peters S; Lim SB; Louie DR; Yang CL; Eng JJ
    J Neuroeng Rehabil; 2020 Aug; 17(1):107. PubMed ID: 32778109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the Neuromotor Control Processes of Steady-State and Speed-Matched Treadmill and Overground Walking.
    Herold F; Aye N; Hamacher D; Schega L
    Brain Topogr; 2019 May; 32(3):472-476. PubMed ID: 30680671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial task-related brain activity and its association with preferred and fast pace gait speed in older adults.
    Gonzales JU; Al-Khalil K; O'Boyle M
    Neurosci Lett; 2019 Nov; 713():134526. PubMed ID: 31585208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frontal, Sensorimotor, and Posterior Parietal Regions Are Involved in Dual-Task Walking After Stroke.
    Lim SB; Peters S; Yang CL; Boyd LA; Liu-Ambrose T; Eng JJ
    Front Neurol; 2022; 13():904145. PubMed ID: 35812105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional near-infrared spectroscopy evidence of cognitive-motor interference in different dual tasks.
    Ou ZT; Ding Q; Yao ST; Zhang L; Li YW; Lan Y; Xu GQ
    Eur J Neurosci; 2024 Jun; 59(11):3045-3060. PubMed ID: 38576168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Modal Functional Connectivity of the Premotor Cortex Reflects Residual Motor Output After Stroke.
    Brihmat N; Tarri M; Gasq D; Marque P; Castel-Lacanal E; Loubinoux I
    Brain Connect; 2020 Jun; 10(5):236-249. PubMed ID: 32414294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved cortical activity and reduced gait asymmetry during poststroke self-paced walking rehabilitation.
    Oh K; Park J; Jo SH; Hong SJ; Kim WS; Paik NJ; Park HS
    J Neuroeng Rehabil; 2021 Apr; 18(1):60. PubMed ID: 33849557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: A functional near-infrared spectroscopy neuroimaging study.
    Kim HY; Yang SP; Park GL; Kim EJ; You JS
    NeuroRehabilitation; 2016; 38(2):171-8. PubMed ID: 26923356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive locomotor network activation during randomized walking speeds using functional near-infrared spectroscopy.
    Kim HY; Kim EJ; You JSH
    Technol Health Care; 2017 Jul; 25(S1):93-98. PubMed ID: 28582896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Effective Connectivity of the Left Parietal Lobe During Walking Tasks in Parkinson's Disease.
    Wang Y; Yu N; Lu J; Zhang X; Wang J; Shu Z; Cheng Y; Zhu Z; Yu Y; Liu P; Han J; Wu J
    J Parkinsons Dis; 2023; 13(2):165-178. PubMed ID: 36872789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prefrontal Cortical Activity During Preferred and Fast Walking in Young and Older Adults: An fNIRS Study.
    Belli V; Orcioli-Silva D; Beretta VS; Vitório R; Zampier VC; Nóbrega-Sousa P; Conceição NRD; Gobbi LTB
    Neuroscience; 2021 Oct; 473():81-89. PubMed ID: 34455013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upper limb intelligent feedback robot training significantly activates the cerebral cortex and promotes the functional connectivity of the cerebral cortex in patients with stroke: A functional near-infrared spectroscopy study.
    Li H; Fu X; Lu L; Guo H; Yang W; Guo K; Huang Z
    Front Neurol; 2023; 14():1042254. PubMed ID: 36814999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke.
    Hannanu FF; Zeffiro TA; Lamalle L; Heck O; Renard F; Thuriot A; Krainik A; Hommel M; Detante O; Jaillard A;
    Neuroimage Clin; 2017; 14():518-529. PubMed ID: 28317947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain Activation and Gait Alteration During Cognitive and Motor Dual Task Walking in Stroke-A Functional Near-Infrared Spectroscopy Study.
    Liu YC; Yang YR; Tsai YA; Wang RY; Lu CF
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2416-2423. PubMed ID: 30371378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.