These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37868225)

  • 1. Electron Beam Induced Enhancement and Suppression of Oxidation in Cu Nanoparticles in Environmental Scanning Transmission Electron Microscopy.
    Ziashahabi A; Elsukova A; Nilsson S; Beleggia M; Stanley Jørgensen P; Langhammer C; Kadkhodazadeh S
    ACS Nanosci Au; 2023 Oct; 3(5):389-397. PubMed ID: 37868225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.
    LaGrow AP; Ward MR; Lloyd DC; Gai PL; Boyes ED
    J Am Chem Soc; 2017 Jan; 139(1):179-185. PubMed ID: 27936677
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Sharna S; Bahri M; Bouillet C; Rouchon V; Lambert A; Gay AS; Chiche D; Ersen O
    Nanoscale; 2021 Jun; 13(21):9747-9756. PubMed ID: 34019612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles.
    LaGrow AP; Famiani S; Sergides A; Lari L; Lloyd DC; Takahashi M; Maenosono S; Boyes ED; Gai PL; Thanh NTK
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy.
    Zhang D; Jin C; Li ZY; Zhang Z; Li J
    Sci Bull (Beijing); 2017 Jun; 62(11):775-778. PubMed ID: 36659273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competing oxidation mechanisms in Cu nanoparticles and their plasmonic signatures.
    Nilsson S; Nielsen MR; Fritzsche J; Langhammer C; Kadkhodazadeh S
    Nanoscale; 2022 Jun; 14(23):8332-8341. PubMed ID: 35616189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Nanosizing on the Oxidation of Partially Oxidized Copper Nanoparticles.
    Leitner J; Sedmidubský D; Lojka M; Jankovský O
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Atom Dynamics in Chemical Reactions.
    Boyes ED; LaGrow AP; Ward MR; Mitchell RW; Gai PL
    Acc Chem Res; 2020 Feb; 53(2):390-399. PubMed ID: 32022555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic measurements from in situ TEM observations.
    Sharma R
    Microsc Res Tech; 2009 Mar; 72(3):144-52. PubMed ID: 19130611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity.
    Cheng G; Hight Walker AR
    Anal Bioanal Chem; 2010 Feb; 396(3):1057-69. PubMed ID: 19841909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ oxidation and reduction of cerium dioxide nanoparticles studied by scanning transmission electron microscopy.
    Johnston-Peck AC; Yang WD; Winterstein JP; Sharma R; Herzing AA
    Micron; 2018 Dec; 115():54-63. PubMed ID: 30212712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy.
    Koh AL; Sinclair R
    Ultramicroscopy; 2017 May; 176():132-138. PubMed ID: 27979618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron beam induced evolution in Au, Ag, and interfaced heterogeneous Au/Ag nanoparticles.
    Liu Y; Sun Y
    Nanoscale; 2015 Aug; 7(32):13687-93. PubMed ID: 26213998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature.
    Ghosh T; Satpati B
    Beilstein J Nanotechnol; 2017; 8():425-433. PubMed ID: 28326232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of hexavalent chromium reduction by Shewanella oneidensis MR-1 in presence of copper nanoparticles via stimulating bacterial extracellular electron transfer and environmental adaptability.
    Chen L; Wu Y; Shen Q; Zheng X; Chen Y
    Bioresour Technol; 2022 Oct; 361():127686. PubMed ID: 35901865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing Temperature-Dependent Oxidation Dynamics of Ni Nanoparticles via Ambient Pressure Transmission Electron Microscopy.
    You R; Ou Y; Qi R; Yu J; Wang F; Jiang Y; Zou S; Han ZK; Yuan W; Yang H; Zhang Z; Wang Y
    Nano Lett; 2023 Aug; 23(16):7260-7266. PubMed ID: 37534944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-gas reactions of complex oxides inside an environmental high-resolution transmission electron microscope.
    Sayagués MJ; Krumeich F; Hutchison JL
    Micron; 2001 Jul; 32(5):457-71. PubMed ID: 11163720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.