These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37868316)

  • 1. Editorial: Importance of root symbiomes for plant nutrition: new insights, perspectives and future challenges, volume II.
    Das D; Kafle A; Ho-Plágaro T; Zimmermann SD; Bücking H; Garcia K
    Front Plant Sci; 2023; 14():1296604. PubMed ID: 37868316
    [No Abstract]   [Full Text] [Related]  

  • 2. Editorial: Importance of Root Symbiomes for Plant Nutrition: New Insights, Perspectives and Future Challenges.
    Garcia K; Bücking H; Zimmermann SD
    Front Plant Sci; 2020; 11():594. PubMed ID: 32477392
    [No Abstract]   [Full Text] [Related]  

  • 3. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.
    Toju H; Sato H; Tanabe AS
    PLoS One; 2014; 9(1):e86566. PubMed ID: 24489745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    García-Soto I; Boussageon R; Cruz-Farfán YM; Castro-Chilpa JD; Hernández-Cerezo LX; Bustos-Zagal V; Leija-Salas A; Hernández G; Torres M; Formey D; Courty PE; Wipf D; Serrano M; Tromas A
    Front Plant Sci; 2021; 12():696450. PubMed ID: 34868100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays.
    Kafle A; Frank HER; Rose BD; Garcia K
    J Exp Bot; 2022 Mar; 73(5):1288-1300. PubMed ID: 34791191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flowering plant immune repertoires expand under mycorrhizal symbiosis.
    Kramer EM; Statter SA; Yi HJ; Carlson JW; McClelland DHR
    Plant Direct; 2019 Mar; 3(3):e00125. PubMed ID: 31245768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tripartite symbiosis of Sophora tomentosa, rhizobia and arbuscular mycorhizal fungi.
    Toma MA; Soares de Carvalho T; Azarias Guimarães A; Martins da Costa E; Savana da Silva J; de Souza Moreira FM
    Braz J Microbiol; 2017; 48(4):680-688. PubMed ID: 28756029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.
    Wang W; Shi J; Xie Q; Jiang Y; Yu N; Wang E
    Mol Plant; 2017 Sep; 10(9):1147-1158. PubMed ID: 28782719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P.
    Wang X; Pan Q; Chen F; Yan X; Liao H
    Mycorrhiza; 2011 Apr; 21(3):173-81. PubMed ID: 20544230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant invasions--the role of mutualisms.
    Richardson DM; Allsopp N; D'Antonio CM; Milton SJ; Rejmánek M
    Biol Rev Camb Philos Soc; 2000 Feb; 75(1):65-93. PubMed ID: 10740893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Evolution of nitrogen-fixing symbioses based on the migration of bacteria from mycorrhizal fungi and soil into the plant tissues].
    Provorov NA; Shtark OY; Dolgikh EA
    Zh Obshch Biol; 2016; 77(5):329-45. PubMed ID: 30024143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases.
    Ried MK; Antolín-Llovera M; Parniske M
    Elife; 2014 Nov; 3():. PubMed ID: 25422918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder.
    Schweiger PF
    J Plant Physiol; 2016 Oct; 205():84-92. PubMed ID: 27639038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots.
    Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N
    Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signaling in the arbuscular mycorrhizal symbiosis.
    Harrison MJ
    Annu Rev Microbiol; 2005; 59():19-42. PubMed ID: 16153162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What do we know from the transcriptomic studies investigating the interactions between plants and plant growth-promoting bacteria?
    Mukherjee A
    Front Plant Sci; 2022; 13():997308. PubMed ID: 36186072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment.
    van der Heijden MG; de Bruin S; Luckerhoff L; van Logtestijn RS; Schlaeppi K
    ISME J; 2016 Feb; 10(2):389-99. PubMed ID: 26172208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus.
    Suzaki T; Takeda N; Nishida H; Hoshino M; Ito M; Misawa F; Handa Y; Miura K; Kawaguchi M
    PLoS Genet; 2019 Jan; 15(1):e1007865. PubMed ID: 30605473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi.
    Liu A; Ku YS; Contador CA; Lam HM
    Front Genet; 2020; 11():583954. PubMed ID: 33193716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A symbiotic footprint in the plant root microbiome.
    Hartman K; Schmid MW; Bodenhausen N; Bender SF; Valzano-Held AY; Schlaeppi K; van der Heijden MGA
    Environ Microbiome; 2023 Jul; 18(1):65. PubMed ID: 37525294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.