These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37868320)

  • 1. All nonhomologous chromosomes and rearrangements in
    Chai J; Xue L; Lei J; Yao W; Zhang M; Deng Z; Yu F
    Front Plant Sci; 2023; 14():1176914. PubMed ID: 37868320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization.
    Yu F; Wang P; Li X; Huang Y; Wang Q; Luo L; Jing Y; Liu X; Deng Z; Wu J; Yang Y; Chen R; Zhang M; Xu L
    Mol Cytogenet; 2018; 11():35. PubMed ID: 29977338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars.
    Wang K; Cheng H; Han J; Esh A; Liu J; Zhang Y; Wang B
    Chromosome Res; 2022 Mar; 30(1):29-41. PubMed ID: 34988746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugarcane genome architecture decrypted with chromosome-specific oligo probes.
    Piperidis N; D'Hont A
    Plant J; 2020 Sep; 103(6):2039-2051. PubMed ID: 32537783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum.
    Meng Z; Han J; Lin Y; Zhao Y; Lin Q; Ma X; Wang J; Zhang M; Zhang L; Yang Q; Wang K
    Theor Appl Genet; 2020 Jan; 133(1):187-199. PubMed ID: 31587087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum.
    Zhang J; Sharma A; Yu Q; Wang J; Li L; Zhu L; Zhang X; Chen Y; Ming R
    BMC Genomics; 2016 Jun; 17():446. PubMed ID: 27287040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane.
    Meng Z; Wang Q; Khurshid H; Raza G; Han J; Wang B; Wang K
    Front Plant Sci; 2021; 12():731664. PubMed ID: 34512706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis of Homologous Sequences of
    Sharma A; Song J; Lin Q; Singh R; Ramos N; Wang K; Zhang J; Ming R; Yu Q
    Front Plant Sci; 2018; 9():1414. PubMed ID: 30319674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars.
    Huang Y; Chen H; Han J; Zhang Y; Ma S; Yu G; Wang Z; Wang K
    Chromosoma; 2020 Mar; 129(1):45-55. PubMed ID: 31848693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensively Characterizing the Cytological Features of
    Meng Z; Zhang Z; Yan T; Lin Q; Wang Y; Huang W; Huang Y; Li Z; Yu Q; Wang J; Wang K
    Front Plant Sci; 2018; 9():1624. PubMed ID: 30459801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane.
    Piperidis G; Piperidis N; D'Hont A
    Mol Genet Genomics; 2010 Jul; 284(1):65-73. PubMed ID: 20532565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome remodelling in three modern S. officinarumxS. spontaneum sugarcane cultivars.
    Cuadrado A; Acevedo R; Moreno Díaz de la Espina S; Jouve N; de la Torre C
    J Exp Bot; 2004 Apr; 55(398):847-54. PubMed ID: 14990623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex.
    Yu F; Zhao X; Chai J; Ding X; Li X; Huang Y; Wang X; Wu J; Zhang M; Yang Q; Deng Z; Jiang J
    New Phytol; 2022 Feb; 233(4):1953-1965. PubMed ID: 34874076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of karyotypic evolution in Saccharum spontaneum species by comparative oligo-FISH mapping.
    Meng Z; Wang F; Xie Q; Li R; Shen H; Li H
    BMC Plant Biol; 2022 Dec; 22(1):599. PubMed ID: 36539690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics.
    D'Hont A; Grivet L; Feldmann P; Rao S; Berding N; Glaszmann JC
    Mol Gen Genet; 1996 Mar; 250(4):405-13. PubMed ID: 8602157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long read transcriptome sequencing of a sugarcane hybrid and its progenitors,
    Thirugnanasambandam PP; Singode A; Thalambedu LP; Athiappan S; Krishnasamy M; Purakkal SV; Govind H; Furtado A; Henry R
    Front Plant Sci; 2023; 14():1199748. PubMed ID: 37662143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential detection of transposable elements between Saccharum species.
    de Souza MC; Silva JN; Almeida C
    Genet Mol Biol; 2013 Sep; 36(3):408-12. PubMed ID: 24130449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of subgenomic origin of BACs in an interspecific hybrid sugarcane cultivar by overlapping oligonucleotide hybridizations.
    Kim C; Robertson JS; Paterson AH
    Genome; 2011 Sep; 54(9):727-37. PubMed ID: 21883018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Analysis of two Sugarcane Ancestors
    Xu F; He L; Gao S; Su Y; Li F; Xu L
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L.
    Zhu JR; Zhou H; Pan YB; Lu X
    Genet Mol Res; 2014 Jan; 13(2):3037-47. PubMed ID: 24615073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.