These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37868800)
1. Keratoconus Detection-based on Dynamic Corneal Deformation Videos Using Deep Learning. Abdelmotaal H; Hazarbassanov RM; Salouti R; Nowroozzadeh MH; Taneri S; Al-Timemy AH; Lavric A; Yousefi S Ophthalmol Sci; 2024; 4(2):100380. PubMed ID: 37868800 [TBL] [Abstract][Full Text] [Related]
2. Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients. Liu Y; Zhang Y; Chen Y BMC Ophthalmol; 2021 Sep; 21(1):339. PubMed ID: 34544392 [TBL] [Abstract][Full Text] [Related]
3. Localized Corneal Biomechanical Alteration Detected In Early Keratoconus Based on Corneal Deformation Using Artificial Intelligence. Chen X; Tan Z; Huo Y; Song J; Xu Q; Yang C; Jhanji V; Li J; Hou J; Zou H; Ali Khan G; Alzogool M; Wang R; Wang Y Asia Pac J Ophthalmol (Phila); 2023 Nov-Dec 01; 12(6):574-581. PubMed ID: 37973045 [TBL] [Abstract][Full Text] [Related]
4. Artificial Intelligence-Based Diagnostic Model for Detecting Keratoconus Using Videos of Corneal Force Deformation. Tan Z; Chen X; Li K; Liu Y; Cao H; Li J; Jhanji V; Zou H; Liu F; Wang R; Wang Y Transl Vis Sci Technol; 2022 Sep; 11(9):32. PubMed ID: 36178782 [TBL] [Abstract][Full Text] [Related]
5. Detecting dry eye from ocular surface videos based on deep learning. Abdelmotaal H; Hazarbasanov R; Taneri S; Al-Timemy A; Lavric A; Takahashi H; Yousefi S Ocul Surf; 2023 Apr; 28():90-98. PubMed ID: 36708879 [TBL] [Abstract][Full Text] [Related]
6. Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity. Herber R; Pillunat LE; Raiskup F Eye Vis (Lond); 2021 Jun; 8(1):21. PubMed ID: 34059127 [TBL] [Abstract][Full Text] [Related]
7. Waveform analysis of deformation amplitude and deflection amplitude in normal, suspect, and keratoconic eyes. Francis M; Pahuja N; Shroff R; Gowda R; Matalia H; Shetty R; Remington Nelson EJ; Sinha Roy A J Cataract Refract Surg; 2017 Oct; 43(10):1271-1280. PubMed ID: 29120713 [TBL] [Abstract][Full Text] [Related]
8. A Potential Screening Index of Corneal Biomechanics in Healthy Subjects, Forme Fruste Keratoconus Patients and Clinical Keratoconus Patients. Tian L; Qin X; Zhang H; Zhang D; Guo LL; Zhang HX; Wu Y; Jie Y; Li L Front Bioeng Biotechnol; 2021; 9():766605. PubMed ID: 35004638 [No Abstract] [Full Text] [Related]
9. Use of machine learning to achieve keratoconus detection skills of a corneal expert. Cohen E; Bank D; Sorkin N; Giryes R; Varssano D Int Ophthalmol; 2022 Dec; 42(12):3837-3847. PubMed ID: 35953576 [TBL] [Abstract][Full Text] [Related]
11. Combinations of Scheimpflug tomography, ocular coherence tomography and air-puff tonometry improve the detection of keratoconus. Lu NJ; Koppen C; Hafezi F; Ní Dhubhghaill S; Aslanides IM; Wang QM; Cui LL; Rozema JJ Cont Lens Anterior Eye; 2023 Jun; 46(3):101840. PubMed ID: 37055334 [TBL] [Abstract][Full Text] [Related]
12. Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning. Abdelmotaal H; Mostafa MM; Mostafa ANR; Mohamed AA; Abdelazeem K Transl Vis Sci Technol; 2020 Dec; 9(13):30. PubMed ID: 33384884 [TBL] [Abstract][Full Text] [Related]
13. Comparative Analysis of Vision Transformers and Conventional Convolutional Neural Networks in Detecting Referable Diabetic Retinopathy. Goh JHL; Ang E; Srinivasan S; Lei X; Loh J; Quek TC; Xue C; Xu X; Liu Y; Cheng CY; Rajapakse JC; Tham YC Ophthalmol Sci; 2024; 4(6):100552. PubMed ID: 39165694 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the morphological and biomechanical characteristics of keratoconus, forme fruste keratoconus, and normal corneas. Guo LL; Tian L; Cao K; Li YX; Li N; Yang WQ; Jie Y Semin Ophthalmol; 2021 Nov; 36(8):671-678. PubMed ID: 33734947 [No Abstract] [Full Text] [Related]
15. Evaluation of artificial intelligence models for the detection of asymmetric keratoconus eyes using Scheimpflug tomography. Xu Z; Feng R; Jin X; Hu H; Ni S; Xu W; Zheng X; Wu J; Yao K Clin Exp Ophthalmol; 2022 Sep; 50(7):714-723. PubMed ID: 35704615 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. Kovács I; Miháltz K; Kránitz K; Juhász É; Takács Á; Dienes L; Gergely R; Nagy ZZ J Cataract Refract Surg; 2016 Feb; 42(2):275-83. PubMed ID: 27026453 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Corneal Deformation Parameters in Keratoconic and Normal Eyes Using a Non-contact Tonometer With a Dynamic Ultra-High-Speed Scheimpflug Camera. Mercer RN; Waring GO; Roberts CJ; Jhanji V; Wang Y; Filho JS; Hemings RA; Rocha KM J Refract Surg; 2017 Sep; 33(9):625-631. PubMed ID: 28880338 [TBL] [Abstract][Full Text] [Related]
18. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques. Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Anterior and Posterior Corneal Higher Order Aberrations for the Detection of Keratoconus and Suspect Keratoconus. Salman A; Kailani O; Marshall J; Ghabra M; Balamoun AA; Darwish TR; Badla AA; Alhaji H Tomography; 2022 Dec; 8(6):2864-2873. PubMed ID: 36548532 [TBL] [Abstract][Full Text] [Related]
20. Dynamic corneal biomechanics in different cell layers: in keratoconus and normal eyes. Alvani A; Hashemi H; Pakravan M; Mahbod M; Amanzadeh K; Seyedian MA; Yaseri M; Jafarzadehpur E; Fotouhi A Ophthalmic Physiol Opt; 2021 Mar; 41(2):414-423. PubMed ID: 33236803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]