These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37868898)
21. Construction and Evaluation of a Sepsis Risk Prediction Model for Urinary Tract Infection. Zhang L; Zhang F; Xu F; Wang Z; Ren Y; Han D; Lyu J; Yin H Front Med (Lausanne); 2021; 8():671184. PubMed ID: 34095176 [No Abstract] [Full Text] [Related]
22. Clinical characteristics and risk factors associated with ICU-acquired infections in sepsis: A retrospective cohort study. He Y; Xu J; Shang X; Fang X; Gao C; Sun D; Yao L; Zhou T; Pan S; Zou X; Shu H; Yang X; Shang Y Front Cell Infect Microbiol; 2022; 12():962470. PubMed ID: 35967847 [TBL] [Abstract][Full Text] [Related]
23. Construction and validation of an early warning model for predicting the acute kidney injury in elderly patients with sepsis. Xin Q; Xie T; Chen R; Wang H; Zhang X; Wang S; Liu C; Zhang J Aging Clin Exp Res; 2022 Dec; 34(12):2993-3004. PubMed ID: 36053443 [TBL] [Abstract][Full Text] [Related]
24. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
25. A prediction model for predicting the risk of acute respiratory distress syndrome in sepsis patients: a retrospective cohort study. Xu C; Zheng L; Jiang Y; Jin L BMC Pulm Med; 2023 Mar; 23(1):78. PubMed ID: 36890503 [TBL] [Abstract][Full Text] [Related]
26. A Nomogram With Six Variables Is Useful to Predict the Risk of Acquiring Carbapenem-Resistant Microorganism Infection in ICU Patients. Zhang J; Liu W; Shi W; Cui X; Liu Y; Lu Z; Xiao W; Hua T; Yang M Front Cell Infect Microbiol; 2022; 12():852761. PubMed ID: 35402310 [TBL] [Abstract][Full Text] [Related]
27. Risk factor analysis and nomogram for predicting in-hospital mortality in ICU patients with sepsis and lung infection. Ren Y; Zhang L; Xu F; Han D; Zheng S; Zhang F; Li L; Wang Z; Lyu J; Yin H BMC Pulm Med; 2022 Jan; 22(1):17. PubMed ID: 34991569 [TBL] [Abstract][Full Text] [Related]
28. A nomogram to predict prolonged stay of obesity patients with sepsis in ICU: Relevancy for predictive, personalized, preventive, and participatory healthcare strategies. Chen Y; Luo M; Cheng Y; Huang Y; He Q Front Public Health; 2022; 10():944790. PubMed ID: 36033731 [TBL] [Abstract][Full Text] [Related]
29. Nomogram and Machine Learning Models Predict 1-Year Mortality Risk in Patients With Sepsis-Induced Cardiorenal Syndrome. Liu Y; Zhang Y; Zhang X; Liu X; Zhou Y; Jin Y; Yu C Front Med (Lausanne); 2022; 9():792238. PubMed ID: 35573024 [TBL] [Abstract][Full Text] [Related]
30. [Correlation between blood pressure indexes and prognosis in sepsis patients: a cohort study based on MIMIC-III database]. Liu X; Zhao Y; Qin Y; Ma Q; Wang Y; Weng Z; Zhu F Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jun; 35(6):578-585. PubMed ID: 37366122 [TBL] [Abstract][Full Text] [Related]
31. A nomogram incorporating functional and tubular damage biomarkers to predict the risk of acute kidney injury for septic patients. Ma J; Deng Y; Lao H; Ouyang X; Liang S; Wang Y; Yao F; Deng Y; Chen C BMC Nephrol; 2021 May; 22(1):176. PubMed ID: 33985459 [TBL] [Abstract][Full Text] [Related]
32. Prognostic value of an inflammatory biomarker-based clinical algorithm in septic patients in the emergency department: An observational study. Zhao C; Wei Y; Chen D; Jin J; Chen H Int Immunopharmacol; 2020 Mar; 80():106145. PubMed ID: 31955067 [TBL] [Abstract][Full Text] [Related]
33. Development and validation of a nomogram to predict the risk of sepsis-associated encephalopathy for septic patients in PICU: a multicenter retrospective cohort study. Wang G; Jiang X; Fu Y; Gao Y; Jiang Q; Guo E; Huang H; Liu X J Intensive Care; 2024 Feb; 12(1):8. PubMed ID: 38378667 [TBL] [Abstract][Full Text] [Related]
34. Development and validation of a score to predict mortality in ICU patients with sepsis: a multicenter retrospective study. Weng J; Hou R; Zhou X; Xu Z; Zhou Z; Wang P; Wang L; Chen C; Wu J; Wang Z J Transl Med; 2021 Jul; 19(1):322. PubMed ID: 34325720 [TBL] [Abstract][Full Text] [Related]
35. Development of a nomogram for predicting 90-day mortality in patients with sepsis-associated liver injury. Cui L; Bao J; Yu C; Zhang C; Huang R; Liu L; Shao M Sci Rep; 2023 Mar; 13(1):3662. PubMed ID: 36871054 [TBL] [Abstract][Full Text] [Related]
36. Comparison of Two Predictive Models of Sepsis in Critically Ill Patients Based on the Combined Use of Inflammatory Markers. Li X; Liu C; Wang X; Mao Z; Yi H; Zhou F Int J Gen Med; 2022; 15():1013-1022. PubMed ID: 35140504 [TBL] [Abstract][Full Text] [Related]
37. Evaluating the efficiency of a nomogram based on the data of neurosurgical intensive care unit patients to predict pulmonary infection of multidrug-resistant Wu D; Sha Z; Fan Y; Yuan J; Jiang W; Liu M; Nie M; Wu C; Liu T; Chen Y; Feng J; Dong S; Li J; Sun J; Pang C; Jiang R Front Cell Infect Microbiol; 2023; 13():1152512. PubMed ID: 37180447 [TBL] [Abstract][Full Text] [Related]
38. Development and validation of a dynamic online nomogram for predicting acute kidney injury in cirrhotic patients upon ICU admission. Feng LH; Lu Y; Ren S; Liang H; Wei L; Jiang J Front Med (Lausanne); 2023; 10():1055137. PubMed ID: 36778740 [TBL] [Abstract][Full Text] [Related]
39. Construction and Validation of a Risk Prediction Model for Acute Kidney Injury in Patients Suffering from Septic Shock. Yue S; Li S; Huang X; Liu J; Hou X; Wang Y; Wu J Dis Markers; 2022; 2022():9367873. PubMed ID: 35035614 [TBL] [Abstract][Full Text] [Related]
40. [Establishment and evaluation of early in-hospital death prediction model for patients with acute pancreatitis in intensive care unit]. Yu L; Zhou X; Li Y; Liu M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Aug; 35(8):865-869. PubMed ID: 37593868 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]