BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37869102)

  • 1. Differential gene expression of immunity and inflammation genes in colorectal cancer using targeted RNA sequencing.
    Holubekova V; Loderer D; Grendar M; Mikolajcik P; Kolkova Z; Turyova E; Kudelova E; Kalman M; Marcinek J; Miklusica J; Laca L; Lasabova Z
    Front Oncol; 2023; 13():1206482. PubMed ID: 37869102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling, Stemness, and Drug Resistance.
    Wong CC; Xu J; Bian X; Wu JL; Kang W; Qian Y; Li W; Chen H; Gou H; Liu D; Yat Luk ST; Zhou Q; Ji F; Chan LS; Shirasawa S; Sung JJ; Yu J
    Gastroenterology; 2020 Dec; 159(6):2163-2180.e6. PubMed ID: 32814111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors.
    Wang R; Li J; Zhou X; Mao Y; Wang W; Gao S; Wang W; Gao Y; Chen K; Yu S; Wu X; Wen L; Ge H; Fu W; Tang F
    Genome Med; 2022 Aug; 14(1):93. PubMed ID: 35974387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell transcriptome analysis of tumor immune microenvironment characteristics in colorectal cancer liver metastasis.
    Geng Y; Feng J; Huang H; Wang Y; Yi X; Wei S; Zhang M; Li Z; Wang W; Hu W
    Ann Transl Med; 2022 Nov; 10(21):1170. PubMed ID: 36467341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of PIK3CA/KRAS-mutant colorectal cancer stem-like cells to RGD-peptide FraC produced by the strawberry anemone: A promising water-soluble peptide-based inhibitor of metastasis-driver gene CXCR4, stem cell regulatory genes and self-renewal.
    Sarkhosh-Inanlou R; Imani M; Sam MR
    Biomed Pharmacother; 2020 Dec; 132():110807. PubMed ID: 33068939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Tanjak P; Chaiboonchoe A; Suwatthanarak T; Acharayothin O; Thanormjit K; Chanthercrob J; Suwatthanarak T; Wannasuphaphol B; Chumchuen K; Suktitipat B; Sampattavanich S; Korphaisarn K; Pongpaibul A; Poungvarin N; Grove H; Riansuwan W; Trakarnsanga A; Methasate A; Pithukpakorn M; Chinswangwatanakul V
    Cancers (Basel); 2023 Feb; 15(4):. PubMed ID: 36831441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of a common different gene expression signature in patients with colorectal cancer.
    Zhao ZW; Fan XX; Yang LL; Song JJ; Fang SJ; Tu JF; Chen MJ; Zheng LY; Wu FZ; Zhang DK; Ying XH; Ji JS
    Math Biosci Eng; 2019 Apr; 16(4):2942-2958. PubMed ID: 31137244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer.
    Wang J; Qin D; Tao Z; Wang B; Xie Y; Wang Y; Li B; Cao J; Qiao X; Zhong S; Hu X
    Front Immunol; 2022; 13():1056932. PubMed ID: 36479114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer.
    Li XN; Wang ZJ; Ye CX; Zhao BC; Li ZL; Yang Y
    J Exp Clin Cancer Res; 2018 Dec; 37(1):325. PubMed ID: 30591054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer.
    Chen H; Yao J; Bao R; Dong Y; Zhang T; Du Y; Wang G; Ni D; Xun Z; Niu X; Ye Y; Li HB
    Mol Cancer; 2021 Feb; 20(1):29. PubMed ID: 33557837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi gene mutation signatures in colorectal cancer patients: predict for the diagnosis, pathological classification, staging and prognosis.
    Zhuang Y; Wang H; Jiang D; Li Y; Feng L; Tian C; Pu M; Wang X; Zhang J; Hu Y; Liu P
    BMC Cancer; 2021 Apr; 21(1):380. PubMed ID: 33836681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fecal gene detection based on next generation sequencing for colorectal cancer diagnosis.
    He SY; Li YC; Wang Y; Peng HL; Zhou CL; Zhang CM; Chen SL; Yin JF; Lin M
    World J Gastroenterol; 2022 Jul; 28(25):2920-2936. PubMed ID: 35978873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis.
    Hua F; Shang S; Yang YW; Zhang HZ; Xu TL; Yu JJ; Zhou DD; Cui B; Li K; Lv XX; Zhang XW; Liu SS; Yu JM; Wang F; Zhang C; Huang B; Hu ZW
    Gastroenterology; 2019 Feb; 156(3):708-721.e15. PubMed ID: 30365932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of transcript-wide profile regulated by microsatellite instability of colorectal cancer.
    Xu Y; Wang X; Chu Y; Li J; Wang W; Hu X; Zhou F; Zhang H; Zhou L; Kuai R; Jin Y; Yang D; Peng H
    Ann Transl Med; 2022 Feb; 10(4):169. PubMed ID: 35280417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune landscape and prognostic immune-related genes in KRAS-mutant colorectal cancer patients.
    Liu J; Huang X; Liu H; Wei C; Ru H; Qin H; Lai H; Meng Y; Wu G; Xie W; Mo X; Johnson CH; Zhang Y; Tang W
    J Transl Med; 2021 Jan; 19(1):27. PubMed ID: 33413474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferon regulatory factor family influences tumor immunity and prognosis of patients with colorectal cancer.
    Chen YJ; Luo SN; Dong L; Liu TT; Shen XZ; Zhang NP; Liang L
    J Transl Med; 2021 Sep; 19(1):379. PubMed ID: 34488791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression analysis of genes and long non-coding RNAs associated with KRAS mutation in colorectal cancer cells.
    Saliani M; Jalal R; Javadmanesh A
    Sci Rep; 2022 May; 12(1):7965. PubMed ID: 35562390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis.
    Liang B; Li C; Zhao J
    Med Oncol; 2016 Oct; 33(10):111. PubMed ID: 27581154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21.
    Yang Y; Weng W; Peng J; Hong L; Yang L; Toiyama Y; Gao R; Liu M; Yin M; Pan C; Li H; Guo B; Zhu Q; Wei Q; Moyer MP; Wang P; Cai S; Goel A; Qin H; Ma Y
    Gastroenterology; 2017 Mar; 152(4):851-866.e24. PubMed ID: 27876571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies to target energy metabolism in consensus molecular subtype 3 along with Kirsten rat sarcoma viral oncogene homolog mutations for colorectal cancer therapy.
    Wang G; Wang JJ; Yin PH; Xu K; Wang YZ; Shi F; Gao J; Fu XL
    J Cell Physiol; 2019 May; 234(5):5601-5612. PubMed ID: 30341899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.