These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37869554)

  • 21. Atomically Precise Au
    Li Y; Song Y; Zhang X; Liu T; Xu T; Wang H; Jiang DE; Jin R
    J Am Chem Soc; 2022 Jul; 144(27):12381-12389. PubMed ID: 35767839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of Plasmonic-Enhanced Solar Photothermal Effect of Au NR@PVDF Micro-/Nanofilms.
    Ding S; Zhang J; Liu C; Li N; Zhang S; Wang Z; Xi M
    ACS Omega; 2022 Jun; 7(24):20750-20760. PubMed ID: 35755366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manganese-Dioxide-Coating-Instructed Plasmonic Modulation of Gold Nanorods for Activatable Duplex-Imaging-Guided NIR-II Photothermal-Chemodynamic Therapy.
    He T; Jiang C; He J; Zhang Y; He G; Wu J; Lin J; Zhou X; Huang P
    Adv Mater; 2021 Apr; 33(13):e2008540. PubMed ID: 33645863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy.
    Ahijado-Guzmán R; González-Rubio G; Izquierdo JG; Bañares L; López-Montero I; Calzado-Martín A; Calleja M; Tardajos G; Guerrero-Martínez A
    ACS Omega; 2016 Sep; 1(3):388-395. PubMed ID: 27713930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photothermal effects of gold nanorods in aqueous solution and gel media: Influence of particle size and excitation wavelength.
    Mbalaha ZS; Birch DJS; Chen Y
    IET Nanobiotechnol; 2023 Apr; 17(2):103-111. PubMed ID: 36544428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal.
    Joplin A; Hosseini Jebeli SA; Sung E; Diemler N; Straney PJ; Yorulmaz M; Chang WS; Millstone JE; Link S
    ACS Nano; 2017 Dec; 11(12):12346-12357. PubMed ID: 29155558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic stimulation of gold nanorods for the photothermal control of engineered living materials.
    Basaran S; Dey S; Bhusari S; Sankaran S; Kraus T
    Biomater Adv; 2023 Apr; 147():213332. PubMed ID: 36801796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tubelike Gold Sphere-Attapulgite Nanocomposites with a High Photothermal Conversion Ability in the Near-Infrared Region for Enhanced Cancer Photothermal Therapy.
    Wu P; Deng D; Gao J; Cai C
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10243-52. PubMed ID: 27054373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing the Sensitivity of Single-Particle Photothermal Imaging with Thermotropic Liquid Crystals.
    Chang WS; Link S
    J Phys Chem Lett; 2012 May; 3(10):1393-9. PubMed ID: 26286788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fine-Tuning the Homometallic Interface of Au-on-Au Nanorods and Their Photothermal Therapy in the NIR-II Window.
    Jia J; Liu G; Xu W; Tian X; Li S; Han F; Feng Y; Dong X; Chen H
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14443-14448. PubMed ID: 32476215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy.
    Tang J; Jiang X; Wang L; Zhang H; Hu Z; Liu Y; Wu X; Chen C
    Nanoscale; 2014 Apr; 6(7):3670-8. PubMed ID: 24566522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linear and ultrafast nonlinear plasmonics of single nano-objects.
    Crut A; Maioli P; Vallée F; Del Fatti N
    J Phys Condens Matter; 2017 Mar; 29(12):123002. PubMed ID: 28094243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photothermal Microscopy and Spectroscopy with Nanomechanical Resonators.
    West RG; Kanellopulos K; Schmid S
    J Phys Chem C Nanomater Interfaces; 2023 Nov; 127(45):21915-21929. PubMed ID: 38024195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonant scattering-enhanced photothermal microscopy.
    Li Q; Shi Z; Wu L; Wei H
    Nanoscale; 2020 Apr; 12(15):8397-8403. PubMed ID: 32239001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold Nanorod Rotary Motors Driven by Resonant Light Scattering.
    Shao L; Yang ZJ; Andrén D; Johansson P; Käll M
    ACS Nano; 2015 Dec; 9(12):12542-51. PubMed ID: 26564095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Galvanic replacement synthesis of multi-branched gold nanocrystals for photothermal cancer therapy.
    Zhu D; Liu Y; Liu M; Liu X; Prasad PN; Swihart MT
    J Mater Chem B; 2020 Jul; 8(25):5491-5499. PubMed ID: 32478780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles.
    Liu K; Xue X; Furlani EP
    Sci Rep; 2016 Sep; 6():34189. PubMed ID: 27665922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic nanorod absorbers as orientation sensors.
    Chang WS; Ha JW; Slaughter LS; Link S
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2781-6. PubMed ID: 20133646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.