These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37869938)

  • 41. One-step formation of multiple Pickering emulsions stabilized by self-assembled poly(dodecyl acrylate-co-acrylic acid) nanoparticles.
    Zhu Y; Sun J; Yi C; Wei W; Liu X
    Soft Matter; 2016 Sep; 12(36):7577-7584. PubMed ID: 27714337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation mechanism of ionic strength on the ultra-high freeze-thaw stability of myofibrillar protein microgel emulsions.
    Tang M; Sun Y; Feng X; Ma L; Dai H; Fu Y; Zhang Y
    Food Chem; 2023 Sep; 419():136044. PubMed ID: 37011570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-covalent reconfigurable microgel colloidosomes with a well-defined bilayer shell.
    Guan X; Liu Y; Wan Z; Steve Tse YL; Ngai T
    Chem Sci; 2022 Jun; 13(21):6205-6216. PubMed ID: 35733902
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pickering emulsions stabilized by charged nanoparticles.
    Ridel L; Bolzinger MA; Gilon-Delepine N; Dugas PY; Chevalier Y
    Soft Matter; 2016 Sep; 12(36):7564-76. PubMed ID: 27510805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic Covalent Silica Nanoparticles for pH-Switchable Pickering Emulsions.
    Ren G; Wang M; Wang L; Wang Z; Chen Q; Xu Z; Sun D
    Langmuir; 2018 May; 34(20):5798-5806. PubMed ID: 29709197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of NaCl concentration on the formation of high internal phase emulsion based on whey protein isolate microgel particles.
    Wan X; Kang Q; Li J; Guo M; Li P; Shi H; Zhang X; Liu Z; Xia G
    Food Chem; 2024 Feb; 433():137395. PubMed ID: 37678115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Light-Responsive, Reversible Emulsification and Demulsification of Oil-in-Water Pickering Emulsions for Catalysis.
    Li Z; Shi Y; Zhu A; Zhao Y; Wang H; Binks BP; Wang J
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3928-3933. PubMed ID: 33037752
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microgels at interfaces, from mickering emulsions to flat interfaces and back.
    Fernandez-Rodriguez MA; Martín-Molina A; Maldonado-Valderrama J
    Adv Colloid Interface Sci; 2021 Feb; 288():102350. PubMed ID: 33418470
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formulation of Pickering emulsions for the development of surfactant-free sunscreen creams.
    Bordes C; Bolzinger MA; El Achak M; Pirot F; Arquier D; Agusti G; Chevalier Y
    Int J Cosmet Sci; 2021 Aug; 43(4):432-445. PubMed ID: 33964042
    [TBL] [Abstract][Full Text] [Related]  

  • 50. pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles.
    Guan X; Ngai T
    Langmuir; 2021 Mar; 37(8):2843-2854. PubMed ID: 33595319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microgels as stimuli-responsive stabilizers for emulsions.
    Brugger B; Rosen BA; Richtering W
    Langmuir; 2008 Nov; 24(21):12202-8. PubMed ID: 18839977
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel Pickering emulsifiers based on pH-responsive poly(2-(diethylamino)ethyl methacrylate) latexes.
    Morse AJ; Armes SP; Thompson KL; Dupin D; Fielding LA; Mills P; Swart R
    Langmuir; 2013 May; 29(18):5466-75. PubMed ID: 23570375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms.
    Brugger B; Vermant J; Richtering W
    Phys Chem Chem Phys; 2010 Nov; 12(43):14573-8. PubMed ID: 20941404
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pickering Emulsions Synergistically Stabilized by Aliphatic Primary Amines and Silica Nanoparticles.
    Xue L; Li H; Pei X; Cui Z; Song B
    Langmuir; 2022 Nov; 38(46):14109-14117. PubMed ID: 36349864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical phase inversion of Pickering emulsions via metastable wetting of rough colloids.
    Zanini M; Cingolani A; Hsu CP; Fernández-Rodríguez MÁ; Soligno G; Beltzung A; Caimi S; Mitrano D; Storti G; Isa L
    Soft Matter; 2019 Oct; 15(39):7888-7900. PubMed ID: 31532443
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles.
    Liu Q; Chang X; Shan Y; Fu F; Ding S
    J Sci Food Agric; 2021 Jul; 101(9):3630-3643. PubMed ID: 33275778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual responsive Pickering emulsions stabilized by constructed core crosslinked polymer nanoparticles via reversible covalent bonds.
    Guo H; Yang D; Yang M; Gao Y; Liu Y; Li H
    Soft Matter; 2016 Dec; 12(48):9683-9691. PubMed ID: 27858037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions.
    Björkegren S; Nordstierna L; Törncrona A; Palmqvist A
    J Colloid Interface Sci; 2017 Feb; 487():250-257. PubMed ID: 27776283
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Factors that affect Pickering emulsions stabilized by mesoporous hollow silica microspheres.
    Zhang Y; Bao Y; Zhang W; Xiang R
    J Colloid Interface Sci; 2023 Mar; 633():1012-1021. PubMed ID: 36516677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.