These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37870175)

  • 41. A system for recording neural activity chronically and simultaneously from multiple cortical and subcortical regions in nonhuman primates.
    Feingold J; Desrochers TM; Fujii N; Harlan R; Tierney PL; Shimazu H; Amemori K; Graybiel AM
    J Neurophysiol; 2012 Apr; 107(7):1979-95. PubMed ID: 22170970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluidic Microactuation of Flexible Electrodes for Neural Recording.
    Vitale F; Vercosa DG; Rodriguez AV; Pamulapati SS; Seibt F; Lewis E; Yan JS; Badhiwala K; Adnan M; Royer-Carfagni G; Beierlein M; Kemere C; Pasquali M; Robinson JT
    Nano Lett; 2018 Jan; 18(1):326-335. PubMed ID: 29220192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Columnar processing of border ownership in primate visual cortex.
    Franken TP; Reynolds JH
    Elife; 2021 Nov; 10():. PubMed ID: 34845986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulus Feature-Specific Information Flow Along the Columnar Cortical Microcircuit Revealed by Multivariate Laminar Spiking Analysis.
    Tovar DA; Westerberg JA; Cox MA; Dougherty K; Carlson TA; Wallace MT; Maier A
    Front Syst Neurosci; 2020; 14():600601. PubMed ID: 33328912
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective Formation of Porous Pt Nanorods for Highly Electrochemically Efficient Neural Electrode Interfaces.
    Ganji M; Paulk AC; Yang JC; Vahidi NW; Lee SH; Liu R; Hossain L; Arneodo EM; Thunemann M; Shigyo M; Tanaka A; Ryu SB; Lee SW; Tchoe Y; Marsala M; Devor A; Cleary DR; Martin JR; Oh H; Gilja V; Gentner TQ; Fried SI; Halgren E; Cash SS; Dayeh SA
    Nano Lett; 2019 Sep; 19(9):6244-6254. PubMed ID: 31369283
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices.
    Patel PR; Welle EJ; Letner JG; Shen H; Bullard AJ; Caldwell CM; Vega-Medina A; Richie JM; Thayer HE; Patil PG; Cai D; Chestek CA
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36595323
    [No Abstract]   [Full Text] [Related]  

  • 47. Neuronal representation of stand and squat in the primary motor cortex of monkeys.
    Ma C; Ma X; Zhang H; Xu J; He J
    Behav Brain Funct; 2015 Apr; 11():15. PubMed ID: 25881063
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task.
    Wang D; Zhang Q; Li Y; Wang Y; Zhu J; Zhang S; Zheng X
    J Neural Eng; 2014 Jun; 11(3):036009. PubMed ID: 24809544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces.
    Leuthardt EC; Freudenberg Z; Bundy D; Roland J
    Neurosurg Focus; 2009 Jul; 27(1):E10. PubMed ID: 19569885
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long-term all-optical interrogation of cortical neurons in awake-behaving nonhuman primates.
    Ju N; Jiang R; Macknik SL; Martinez-Conde S; Tang S
    PLoS Biol; 2018 Aug; 16(8):e2005839. PubMed ID: 30089111
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Layer-dependent stability of intracortical recordings and neuronal cell loss.
    Urdaneta ME; Kunigk NG; PeƱaloza-Aponte JD; Currlin S; Malone IG; Fried SI; Otto KJ
    Front Neurosci; 2023; 17():1096097. PubMed ID: 37090803
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Population receptive fields in nonhuman primates from whole-brain fMRI and large-scale neurophysiology in visual cortex.
    Klink PC; Chen X; Vanduffel W; Roelfsema PR
    Elife; 2021 Nov; 10():. PubMed ID: 34730515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A brain-machine interface instructed by direct intracortical microstimulation.
    O'Doherty JE; Lebedev MA; Hanson TL; Fitzsimmons NA; Nicolelis MA
    Front Integr Neurosci; 2009; 3():20. PubMed ID: 19750199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses.
    Parikh H; Marzullo TC; Kipke DR
    J Neural Eng; 2009 Apr; 6(2):026004. PubMed ID: 19255460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intracellular neuronal recording in awake nonhuman primates.
    Gao L; Wang X
    Nat Protoc; 2020 Nov; 15(11):3615-3631. PubMed ID: 33046899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brain-machine interface for eye movements.
    Graf AB; Andersen RA
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17630-5. PubMed ID: 25422454
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.