BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37870286)

  • 1. Protein-protein interaction and site prediction using transfer learning.
    Liu T; Gao H; Ren X; Xu G; Liu B; Wu N; Luo H; Wang Y; Tu T; Yao B; Guan F; Teng Y; Huang H; Tian J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37870286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BERT-Kcr: prediction of lysine crotonylation sites by a transfer learning method with pre-trained BERT models.
    Qiao Y; Zhu X; Gong H
    Bioinformatics; 2022 Jan; 38(3):648-654. PubMed ID: 34643684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the Question Similarity of Regulatory Documents in the Pharmaceutical Industry by Using the Recognizing Question Entailment System: Evaluation Study.
    Saraswat N; Li C; Jiang M
    JMIR AI; 2023 Sep; 2():e43483. PubMed ID: 38875534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of GPT and BERT-based models on identifying proteinprotein interactions in biomedical text.
    Rehana H; Çam NB; Basmaci M; Zheng J; Jemiyo C; He Y; Özgür A; Hur J
    ArXiv; 2023 Dec; ():. PubMed ID: 38764593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis.
    Ormerod M; Martínez Del Rincón J; Devereux B
    JMIR Med Inform; 2021 May; 9(5):e23099. PubMed ID: 34037527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FG-BERT: a generalized and self-supervised functional group-based molecular representation learning framework for properties prediction.
    Li B; Lin M; Chen T; Wang L
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech.
    Balagopalan A; Eyre B; Robin J; Rudzicz F; Novikova J
    Front Aging Neurosci; 2021; 13():635945. PubMed ID: 33986655
    [No Abstract]   [Full Text] [Related]  

  • 8. Prediction of RNA-protein interactions using a nucleotide language model.
    Yamada K; Hamada M
    Bioinform Adv; 2022; 2(1):vbac023. PubMed ID: 36699410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BERT-5mC: an interpretable model for predicting 5-methylcytosine sites of DNA based on BERT.
    Wang S; Liu Y; Liu Y; Zhang Y; Zhu X
    PeerJ; 2023; 11():e16600. PubMed ID: 38089911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Drug-Target Interaction prediction with BERT and subsequence embedding.
    Yang Z; Liu J; Yang F; Zhang X; Zhang Q; Zhu X; Jiang P
    Comput Biol Chem; 2024 Jun; 110():108058. PubMed ID: 38593480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the performance and explainability of fine-tuned BERT models for neuroradiology protocol assignment.
    Talebi S; Tong E; Li A; Yamin G; Zaharchuk G; Mofrad MRK
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):40. PubMed ID: 38326769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction.
    Kang Y; Xu Y; Wang X; Pu B; Yang X; Rao Y; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36403092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-tuning of BERT Model to Accurately Predict Drug-Target Interactions.
    Kang H; Goo S; Lee H; Chae JW; Yun HY; Jung S
    Pharmaceutics; 2022 Aug; 14(8):. PubMed ID: 36015336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSTL-Kace: Prediction of Prokaryotic Lysine Acetylation Sites Based on Multistage Transfer Learning Strategy.
    Wang GA; Yan X; Li X; Liu Y; Xia J; Zhu X
    ACS Omega; 2023 Nov; 8(44):41930-41942. PubMed ID: 37969991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the Perceived Severity of Patient-Generated Telemedical Queries Regarding COVID: Developing and Evaluating a Transfer Learning-Based Solution.
    Gatto J; Seegmiller P; Johnston G; Preum SM
    JMIR Med Inform; 2022 Sep; 10(9):e37770. PubMed ID: 35981230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model.
    Areshey A; Mathkour H
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProteinBERT: a universal deep-learning model of protein sequence and function.
    Brandes N; Ofer D; Peleg Y; Rappoport N; Linial M
    Bioinformatics; 2022 Apr; 38(8):2102-2110. PubMed ID: 35020807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.