BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37870460)

  • 1. A Comparison of Continuous Glucose Monitoring-Measured Time-in-Range 70-180 mg/dL Versus Time-in-Tight-Range 70-140 mg/dL.
    Beck RW; Raghinaru D; Calhoun P; Bergenstal RM
    Diabetes Technol Ther; 2024 Mar; 26(3):151-155. PubMed ID: 37870460
    [No Abstract]   [Full Text] [Related]  

  • 2. Time in Range, Time in Tight Range, and Average Glucose Relationships Are Modulated by Glycemic Variability: Identification of a Glucose Distribution Model Connecting Glycemic Parameters Using Real-World Data.
    Xu Y; Dunn TC; Bergenstal RM; Cheng A; Dabiri Y; Ajjan RA
    Diabetes Technol Ther; 2024 Feb; ():. PubMed ID: 38315505
    [No Abstract]   [Full Text] [Related]  

  • 3. Utility of time in tight range (TITR) in evaluating metabolic control in pediatric and adult patients with type 1 diabetes in treatment with advanced hybrid closed-loop systems.
    Bahillo-Curieses P; Fernández Velasco P; Pérez-López P; Vidueira Martínez AM; Nieto de la Marca MO; Díaz-Soto G
    Endocrine; 2024 May; ():. PubMed ID: 38814372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-World Continuous Glucose Monitoring Data from a Population with Type 1 Diabetes in South Korea: Nationwide Single-System Analysis.
    Kim JY; Jin SM; Andrade SB; Chen B; Kim JH
    Diabetes Technol Ther; 2024 Jun; 26(6):394-402. PubMed ID: 38277166
    [No Abstract]   [Full Text] [Related]  

  • 5. Glycaemia in low-premixed insulin analogue type 2 diabetes patients in a real-world setting: are the CGM targets met?
    Krajnc M; Kravos Tramšek NA
    Eur J Med Res; 2023 Mar; 28(1):111. PubMed ID: 36882852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The association of chronic complications with time in tight range and time in range in people with type 1 diabetes: a retrospective cross-sectional real-world study.
    De Meulemeester J; Charleer S; Visser MM; De Block C; Mathieu C; Gillard P
    Diabetologia; 2024 May; ():. PubMed ID: 38787436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aiming for the Best Glycemic Control Beyond Time in Range: Time in Tight Range as a New Continuous Glucose Monitoring Metric in Children and Adolescents with Type 1 Diabetes Using Different Treatment Modalities.
    Passanisi S; Piona C; Salzano G; Marigliano M; Bombaci B; Morandi A; Alibrandi A; Maffeis C; Lombardo F
    Diabetes Technol Ther; 2024 Mar; 26(3):161-166. PubMed ID: 37902743
    [No Abstract]   [Full Text] [Related]  

  • 8. Continuous Glucose Monitoring-Guided Insulin Administration in Long-Term Care Facilities: A Randomized Clinical Trial.
    Idrees T; Castro-Revoredo IA; Oh HD; Gavaller MD; Zabala Z; Moreno E; Moazzami B; Galindo RJ; Vellanki P; Cabb E; Johnson TM; Peng L; Umpierrez GE
    J Am Med Dir Assoc; 2024 May; 25(5):884-888. PubMed ID: 38460943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term Improvements in Glycemic Control with Dexcom CGM Use in Adults with Noninsulin-Treated Type 2 Diabetes.
    Layne JE; Jepson LH; Carite AM; Parkin CG; Bergenstal RM
    Diabetes Technol Ther; 2024 Jun; ():. PubMed ID: 38904213
    [No Abstract]   [Full Text] [Related]  

  • 10. Time in Tight Glucose Range in Type 1 Diabetes: Predictive Factors and Achievable Targets in Real-World Users of the MiniMed 780G System.
    Castañeda J; Arrieta A; van den Heuvel T; Battelino T; Cohen O
    Diabetes Care; 2024 May; 47(5):790-797. PubMed ID: 38113453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual β-Cell Function Is Associated With Longer Time in Range in Individuals With Type 1 Diabetes.
    Fuhri Snethlage CM; McDonald TJ; Oram RD; de Groen P; Rampanelli E; Schimmel AWM; Holleman F; Siegelaar S; Hoekstra J; Brouwer CB; Knop FK; Verchere CB; van Raalte DH; Roep BO; Nieuwdorp M; Hanssen NMJ
    Diabetes Care; 2024 Jul; 47(7):1114-1121. PubMed ID: 37535870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Glycemic Variability Is Associated with Worse Continuous Glucose Monitoring Metrics in Children and Adolescents with Type 1 Diabetes.
    Piona C; Marigliano M; Mozzillo E; Di Candia F; Zanfardino A; Iafusco D; Maltoni G; Zucchini S; Delvecchio M; Maffeis C
    Horm Res Paediatr; 2021; 94(9-10):369-373. PubMed ID: 34915493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time in Range Is Associated with Incident Diabetic Retinopathy in Adults with Type 1 Diabetes: A Longitudinal Study.
    Shah VN; Kanapka LG; Akturk HK; Polsky S; Forlenza GP; Kollman C; Beck RW; Snell-Bergeon JK
    Diabetes Technol Ther; 2024 Apr; 26(4):246-251. PubMed ID: 38133643
    [No Abstract]   [Full Text] [Related]  

  • 14. Intermittent-scanned continuous glucose monitoring with low glucose alarms decreases hypoglycemia incidence in middle-aged adults with type 1 diabetes in real-life setting.
    Oriot P; Hermans MP
    J Diabetes Complications; 2023 Feb; 37(2):108385. PubMed ID: 36603333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Assessment of Clinical Continuous Glucose Monitoring Targets for Older and High-Risk People Living with Type 1 Diabetes.
    O'Neal DN; Cohen O; Vogrin S; Vigersky RA; Jenkins AJ;
    Diabetes Technol Ther; 2023 Feb; 25(2):108-115. PubMed ID: 36315189
    [No Abstract]   [Full Text] [Related]  

  • 16. The Optimal Duration of a Run-In Period to Initiate Continuous Glucose Monitoring for a Randomized Trial.
    Raghinaru D; Calhoun P; Bergenstal RM; Beck RW
    Diabetes Technol Ther; 2022 Dec; 24(12):868-872. PubMed ID: 35920822
    [No Abstract]   [Full Text] [Related]  

  • 17. Lessons learned from the continuous glucose monitoring metrics in pediatric patients with type 1 diabetes under COVID-19 lockdown.
    Brener A; Mazor-Aronovitch K; Rachmiel M; Levek N; Barash G; Pinhas-Hamiel O; Lebenthal Y; Landau Z
    Acta Diabetol; 2020 Dec; 57(12):1511-1517. PubMed ID: 33026497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of clinical trials to assess diabetes treatment: Minimum duration of continuous glucose monitoring data to estimate time-in-ranges with the desired precision.
    Camerlingo N; Vettoretti M; Sparacino G; Facchinetti A; Mader JK; Choudhary P; Del Favero S;
    Diabetes Obes Metab; 2021 Nov; 23(11):2446-2454. PubMed ID: 34212483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between key continuous glucose monitoring-derived metrics and specific cognitive domains in patients with type 2 diabetes mellitus.
    Dong S; Wang L; Zhao C; Zhang R; Gao Z; Jiang L; Guo Y; Zhou H; Xu S
    BMC Neurol; 2023 May; 23(1):200. PubMed ID: 37210479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefits of a Switch from Intermittently Scanned Continuous Glucose Monitoring (isCGM) to Real-Time (rt) CGM in Diabetes Type 1 Suboptimal Controlled Patients in Real-Life: A One-Year Prospective Study
    Préau Y; Galie S; Schaepelynck P; Armand M; Raccah D
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.