These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37870555)

  • 21. Quantitative analysis of a RNA-cleaving DNA catalyst obtained via in vitro selection.
    Carrigan MA; Ricardo A; Ang DN; Benner SA
    Biochemistry; 2004 Sep; 43(36):11446-59. PubMed ID: 15350131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of deoxyribozyme activity by cationic copolymers.
    Gao J; Shimada N; Maruyama A
    Biomater Sci; 2015 Feb; 3(2):308-16. PubMed ID: 26218121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Split Locations and Secondary Structures of a DNAzyme Critical to Binding-Assembled Multicomponent Nucleic Acid Enzymes for Protein Detection.
    Cao Y; Zhang H; Le XC
    Anal Chem; 2021 Nov; 93(47):15712-15719. PubMed ID: 34788018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-specific cleavage of mutant ABL mRNA by DNAzyme is facilitated by peptide nucleic acid binding to RNA substrate.
    Kim JE; Yoon S; Mok H; Jung W; Kim DE
    FEBS Lett; 2012 Nov; 586(21):3865-9. PubMed ID: 23010596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inability of DNAzymes to cleave RNA in vivo is due to limited Mg[Formula: see text] concentration in cells.
    Victor J; Steger G; Riesner D
    Eur Biophys J; 2018 May; 47(4):333-343. PubMed ID: 29248953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleic acid sequence analysis using DNAzymes.
    Cairns MJ; Sun LQ
    Methods Mol Biol; 2004; 252():291-302. PubMed ID: 15017058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication.
    Roy S; Gupta N; Subramanian N; Mondal T; Banerjea AC; Das S
    J Gen Virol; 2008 Jul; 89(Pt 7):1579-1586. PubMed ID: 18559927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A post-labeling approach for the characterization and quantification of RNA modifications based on site-directed cleavage by DNAzymes.
    Meusburger M; Hengesbach M; Helm M
    Methods Mol Biol; 2011; 718():259-70. PubMed ID: 21370054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA.
    Nedorezova DD; Fakhardo AF; Nemirich DV; Bryushkova EA; Kolpashchikov DM
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4654-4658. PubMed ID: 30693619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Throughput Activity Profiling of RNA-Cleaving DNA Catalysts by Deoxyribozyme Sequencing (DZ-seq).
    Sednev MV; Liaqat A; Höbartner C
    J Am Chem Soc; 2022 Feb; 144(5):2090-2094. PubMed ID: 35081311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes.
    Wang DY; Lai BH; Sen D
    J Mol Biol; 2002 Apr; 318(1):33-43. PubMed ID: 12054766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoswitch nucleic acid catalytic activity by regulating topological structure with a universal supraphotoswitch.
    Liang X; Zhou M; Kato K; Asanuma H
    ACS Synth Biol; 2013 Apr; 2(4):194-202. PubMed ID: 23656478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two DNAzymes targeting the telomerase mRNA with large difference in Mg2+ concentration for maximal catalytic activity.
    Yuan BF; Xue Y; Luo M; Hao YH; Tan Z
    Int J Biochem Cell Biol; 2007; 39(6):1119-29. PubMed ID: 17499543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA-cleaving DNAzymes for accurate biosensing and gene therapy.
    Gao X; Liu Y; Huo W; Song Y; Chen Y; Zhang J; Yang X; Jin Y; Liang XJ
    Nanoscale; 2023 Jul; 15(27):11346-11365. PubMed ID: 37376885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient RNA-cleaving DNA enzyme can specifically target the 5'-untranslated region of severe acute respiratory syndrome associated coronavirus (SARS-CoV).
    Wu S; Xu J; Liu J; Yan X; Zhu X; Xiao G; Sun L; Tien P
    J Gene Med; 2007 Dec; 9(12):1080-6. PubMed ID: 17966113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing fluorogenic RNA-cleaving DNAzymes for biosensing applications.
    Ali MM; Aguirre SD; Mok WW; Li Y
    Methods Mol Biol; 2012; 848():395-418. PubMed ID: 22315083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of helical structures formed by the binding arms of DNAzymes and their substrates on catalytic activity.
    Ota N; Warashina M; Hirano K; Hatanaka K; Taira K
    Nucleic Acids Res; 1998 Jul; 26(14):3385-91. PubMed ID: 9649623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro selection of RNA-cleaving DNAzymes for bacterial detection.
    Zhang W; Feng Q; Chang D; Tram K; Li Y
    Methods; 2016 Aug; 106():66-75. PubMed ID: 27017912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNAzyme-mediated silencing of ornithine decarboxylase.
    Ackermann JM; Kanugula S; Pegg AE
    Biochemistry; 2005 Feb; 44(6):2143-52. PubMed ID: 15697240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An RNA-Cleaving Catalytic DNA Accelerated by Freezing.
    Yu T; Zhou W; Liu J
    Chembiochem; 2018 May; 19(10):1012-1017. PubMed ID: 29537685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.