BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37870557)

  • 1. Bionic Luminescent Skin as Ultrasensitive Temperature-Acoustic Sensor for Underwater Information Perception and Transmission.
    Xu X; Yan B
    Adv Mater; 2024 Jan; 36(4):e2309328. PubMed ID: 37870557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Luminescent HOF-Based Foam as Ultrafast and Ultrasensitive Pressure and Acoustic Bimodal Sensor for Human-Machine Interactive Object and Information Recognition.
    Xu X; Yan B
    Adv Mater; 2023 Sep; 35(38):e2303410. PubMed ID: 37327479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired HOF-based luminescent skin sensor with triple mechanochromism responses for the recognition and collection of human biophysical signals.
    Xu X; Yan B
    Mater Horiz; 2023 Jun; 10(6):2062-2074. PubMed ID: 36916479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Superhydrophobic rGO/PPy/PDMS Coatings on a Polyurethane Sponge for Underwater Pressure and Temperature Sensing.
    Ni Y; Huang J; Li S; Dong X; Zhu T; Cai W; Chen Z; Lai Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53271-53281. PubMed ID: 34723475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Structured Dual-Mode Flexible Sensors for Highly Sensitive Tactile Perception and Noncontact Sensing.
    Ding L; Wang Y; Sun C; Shu Q; Hu T; Xuan S; Gong X
    ACS Appl Mater Interfaces; 2020 May; 12(18):20955-20964. PubMed ID: 32290648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Fidelity Skin-Attachable Acoustic Sensor for Realizing Auditory Electronic Skin.
    Lee S; Kim J; Roh H; Kim W; Chung S; Moon W; Cho K
    Adv Mater; 2022 May; 34(21):e2109545. PubMed ID: 35191559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metasurface for Water-to-Air Sound Transmission.
    Bok E; Park JJ; Choi H; Han CK; Wright OB; Lee SH
    Phys Rev Lett; 2018 Jan; 120(4):044302. PubMed ID: 29437440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Novel Medical Acoustic Sensor Based on MEMS Bionic Fish Ear Structure.
    Zhou C; Zang J; Xue C; Ma Y; Hua X; Gao R; Zhang Z; Li B; Zhang Z
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive, Highly Stable, and Flexible Strain Sensor Inspired by Nature.
    Wang J; Liu L; Yang C; Zhang C; Li B; Meng X; Ma G; Wang D; Zhang J; Niu S; Zhao J; Han Z; Yao Z; Ren L
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16885-16893. PubMed ID: 35348316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote Water-to-Air Eavesdropping with a Phase-Engineered Impedance Matching Metasurface.
    Liu J; Li Z; Liang B; Cheng JC; Alù A
    Adv Mater; 2023 Jul; 35(29):e2301799. PubMed ID: 37045589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Underwater hearing and sound localization with and without an air interface.
    Shupak A; Sharoni Z; Yanir Y; Keynan Y; Alfie Y; Halpern P
    Otol Neurotol; 2005 Jan; 26(1):127-30. PubMed ID: 15699733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Ionogel-Based Fibers for Strain Sensors with Ultrawide Linear Response and Temperature Sensors Insensitive to Strain.
    Wang F; Chen J; Cui X; Liu X; Chang X; Zhu Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30268-30278. PubMed ID: 35758312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and Transparent Electronic Skin Sensor with Sensing Capabilities for Pressure, Temperature, and Humidity.
    Chen L; Xu Y; Liu Y; Wang J; Chen J; Chang X; Zhu Y
    ACS Appl Mater Interfaces; 2023 May; 15(20):24923-24932. PubMed ID: 37159481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of MEMS Directional Acoustic Sensors for Underwater Operation.
    Espinoza A; Alves F; Rabelo R; Da Re G; Karunasiri G
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32106454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound.
    Zhou X; Wang X; Xin F
    Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials.
    Piniak WE; Mann DA; Harms CA; Jones TT; Eckert SA
    PLoS One; 2016; 11(10):e0159711. PubMed ID: 27741231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mussel-inspired adhesive and anti-swelling hydrogels for underwater strain sensing.
    Ji Z; Gong D; Zhu M; Yang J; Bao Y; Wang Z; Xu M
    Soft Matter; 2024 Jan; 20(3):629-639. PubMed ID: 38163997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration.
    Alves F; Park J; McCarty L; Rabelo R; Karunasiri G
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Multifunctional Photonic-Electronic Smart Skin for Ultrasensitive Health Monitoring, for Visual and Self-Powered Sensing.
    Zhao Y; Gao W; Dai K; Wang S; Yuan Z; Li J; Zhai W; Zheng G; Pan C; Liu C; Shen C
    Adv Mater; 2021 Nov; 33(45):e2102332. PubMed ID: 34554616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is human underwater hearing mediated by bone conduction?
    Sørensen K; Christensen-Dalsgaard J; Wahlberg M
    Hear Res; 2022 Jul; 420():108484. PubMed ID: 35429806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.