These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37870771)

  • 1. Learning to Control a Three-Dimensional Ferrofluidic Robot.
    Ahmed R; Calandra R; Marvi H
    Soft Robot; 2024 Apr; 11(2):218-229. PubMed ID: 37870771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Shapeshifting Ferrofluidic Robot.
    Ahmed R; Ilami M; Bant J; Beigzadeh B; Marvi H
    Soft Robot; 2021 Dec; 8(6):687-698. PubMed ID: 33104417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined three dimensional locomotion and deformation of functional ferrofluidic robots.
    Fan X; Zhang Y; Wu Z; Xie H; Sun L; Chen T; Yang Z
    Nanoscale; 2023 Dec; 15(48):19499-19513. PubMed ID: 37982182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A programmable ferrofluidic droplet robot.
    Zhao P; Yan L; Gao X
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):87. PubMed ID: 37752272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable multifunctional ferrofluid droplet robots.
    Fan X; Dong X; Karacakol AC; Xie H; Sitti M
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27916-27926. PubMed ID: 33106419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual and collective manipulation of multifunctional bimodal droplets in three dimensions.
    Sun M; Sun B; Park M; Yang S; Wu Y; Zhang M; Kang W; Yoon J; Zhang L; Sitti M
    Sci Adv; 2024 Jul; 10(29):eadp1439. PubMed ID: 39018413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible Ferrofluid-Based Millirobot for Tumor Photothermal Therapy in Near-Infrared-II Window.
    Ji Y; Bai X; Sun H; Wang L; Gan C; Jia L; Xu J; Zhang W; Wang L; Xu Y; Hou Y; Wang Y; Hui H; Feng L
    Adv Healthc Mater; 2024 Feb; 13(4):e2302395. PubMed ID: 37947303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces.
    Fan X; Jiang Y; Li M; Zhang Y; Tian C; Mao L; Xie H; Sun L; Yang Z; Sitti M
    Sci Adv; 2022 Sep; 8(37):eabq1677. PubMed ID: 36112686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Liquid Metal Droplet Robot with Multifunction and High Output Force in Milli-Newton.
    Zhao P; Yan L; Gao X
    Soft Robot; 2023 Dec; 10(6):1146-1158. PubMed ID: 37327366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting ferrofluidic wetting for miniature soft machines.
    Sun M; Hao B; Yang S; Wang X; Majidi C; Zhang L
    Nat Commun; 2022 Dec; 13(1):7919. PubMed ID: 36564394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Control of Ferrofluid Droplet Adhesion in Shear Flow and on Inclined Surfaces.
    Cui G; Jacobi I
    Langmuir; 2020 Sep; 36(36):10885-10891. PubMed ID: 32881533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Frontiers in 3D Structural Sensing Robots.
    Kaur M; Kim TH; Kim WS
    Adv Mater; 2021 May; 33(19):e2002534. PubMed ID: 33458908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards ferrofluidics for μ-TAS and lab on-a-chip applications.
    Mao L; Koser H
    Nanotechnology; 2006 Feb; 17(4):S34-47. PubMed ID: 21727352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ferrofluidic actuator for an implantable artificial heart.
    Mitamura Y; Wada T; Sakai K
    Artif Organs; 1992 Oct; 16(5):490-5. PubMed ID: 10078298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots.
    Culha U; Demir SO; Trimpe S; Sitti M
    Robot Sci Syst; 2020; 2020():. PubMed ID: 33778098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review.
    Nocentini O; Kim J; Bashir ZM; Cavallo F
    J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots.
    Nazeer MS; Laschi C; Falotico E
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.