These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 37870995)
1. Complex Conformational Space of the RNA Polymerase II C-Terminal Domain upon Phosphorylation. Amith WD; Dutagaci B J Phys Chem B; 2023 Nov; 127(43):9223-9235. PubMed ID: 37870995 [TBL] [Abstract][Full Text] [Related]
2. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Portz B; Lu F; Gibbs EB; Mayfield JE; Rachel Mehaffey M; Zhang YJ; Brodbelt JS; Showalter SA; Gilmour DS Nat Commun; 2017 May; 8():15231. PubMed ID: 28497792 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics study of the phosphorylation effect on the conformational states of the C-terminal domain of RNA polymerase II. Yonezawa Y J Phys Chem B; 2014 May; 118(17):4471-8. PubMed ID: 24611769 [TBL] [Abstract][Full Text] [Related]
4. Removing quote marks from the RNA polymerase II CTD 'code'. Dieci G Biosystems; 2021 Sep; 207():104468. PubMed ID: 34216714 [TBL] [Abstract][Full Text] [Related]
5. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650 [TBL] [Abstract][Full Text] [Related]
6. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription. Irani S; Sipe SN; Yang W; Burkholder NT; Lin B; Sim K; Matthews WL; Brodbelt JS; Zhang Y J Biol Chem; 2019 May; 294(21):8592-8605. PubMed ID: 30971428 [TBL] [Abstract][Full Text] [Related]
7. RNA polymerase II clustering through carboxy-terminal domain phase separation. Boehning M; Dugast-Darzacq C; Rankovic M; Hansen AS; Yu T; Marie-Nelly H; McSwiggen DT; Kokic G; Dailey GM; Cramer P; Darzacq X; Zweckstetter M Nat Struct Mol Biol; 2018 Sep; 25(9):833-840. PubMed ID: 30127355 [TBL] [Abstract][Full Text] [Related]
8. Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats. Chapman AB; Agabian N J Biol Chem; 1994 Feb; 269(7):4754-60. PubMed ID: 8106443 [TBL] [Abstract][Full Text] [Related]
9. Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: possible role in transcription elongation. Baskaran R; Escobar SR; Wang JY Cell Growth Differ; 1999 Jun; 10(6):387-96. PubMed ID: 10392900 [TBL] [Abstract][Full Text] [Related]
10. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Harlen KM; Churchman LS Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323 [TBL] [Abstract][Full Text] [Related]
11. Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Yogesha SD; Mayfield JE; Zhang Y Molecules; 2014 Jan; 19(2):1481-511. PubMed ID: 24473209 [TBL] [Abstract][Full Text] [Related]
12. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146 [TBL] [Abstract][Full Text] [Related]
13. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Chapman RD; Palancade B; Lang A; Bensaude O; Eick D Nucleic Acids Res; 2004; 32(1):35-44. PubMed ID: 14704341 [TBL] [Abstract][Full Text] [Related]
14. The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes. Pei Y; Hausmann S; Ho CK; Schwer B; Shuman S J Biol Chem; 2001 Jul; 276(30):28075-82. PubMed ID: 11387325 [TBL] [Abstract][Full Text] [Related]
15. The repetitive C-terminal domain of RNA polymerase II: multiple conformational states drive the transcription cycle. Lin PS; Tremeau-Bravard A; Dahmus ME Chem Rec; 2003; 3(4):235-45. PubMed ID: 14595832 [TBL] [Abstract][Full Text] [Related]
16. RNA Polymerase II evolution and adaptations: Insights from Plasmodium and other parasitic protists. Purkayastha D; Karmodiya K Infect Genet Evol; 2023 Nov; 115():105505. PubMed ID: 37748526 [TBL] [Abstract][Full Text] [Related]
17. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. Egloff S; Szczepaniak SA; Dienstbier M; Taylor A; Knight S; Murphy S J Biol Chem; 2010 Jul; 285(27):20564-9. PubMed ID: 20457598 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. Zhang J; Corden JL J Biol Chem; 1991 Feb; 266(4):2297-302. PubMed ID: 1989983 [TBL] [Abstract][Full Text] [Related]
19. Efficient and robust preparation of tyrosine phosphorylated intrinsically disordered proteins. Brázda P; Šedo O; Kubíček K; Štefl R Biotechniques; 2019 Jul; 67(1):16-22. PubMed ID: 31092000 [TBL] [Abstract][Full Text] [Related]
20. Transcription activation depends on the length of the RNA polymerase II C-terminal domain. Sawicka A; Villamil G; Lidschreiber M; Darzacq X; Dugast-Darzacq C; Schwalb B; Cramer P EMBO J; 2021 May; 40(9):e107015. PubMed ID: 33555055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]