These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37871222)

  • 1. Emergent properties of melanin-inspired peptide/RNA condensates.
    Netzer A; Katzir I; Baruch Leshem A; Weitman M; Lampel A
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2310569120. PubMed ID: 37871222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomolecular condensates formed by designer minimalistic peptides.
    Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A
    Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal Control of Melanin Synthesis in Liquid Droplets.
    Massarano T; Baruch Leshem A; Weitman M; Lampel A
    ACS Appl Mater Interfaces; 2022 May; 14(18):20520-20527. PubMed ID: 35451309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized and regulated peptide pigment formation inside liquid droplets through confined enzymatic oxidation.
    Barriales K; Kassem S; Sementa D; Vidal Ceballos A; Wang T; Khandaker S; Abzalimov RR; Jain A; Elbaum-Garfinkle S; Ulijn RV
    Chem Commun (Camb); 2023 Nov; 59(95):14138-14141. PubMed ID: 37955166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization and Function of Non-dynamic Biomolecular Condensates.
    Woodruff JB; Hyman AA; Boke E
    Trends Biochem Sci; 2018 Feb; 43(2):81-94. PubMed ID: 29258725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splicing regulation through biomolecular condensates and membraneless organelles.
    Giudice J; Jiang H
    Nat Rev Mol Cell Biol; 2024 Sep; 25(9):683-700. PubMed ID: 38773325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling compartmentalization by non-membrane-bound organelles.
    Wheeler RJ; Hyman AA
    Philos Trans R Soc Lond B Biol Sci; 2018 May; 373(1747):. PubMed ID: 29632271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Peptide Liquid-Liquid Phase Separation by Aromatic Amino Acid Composition.
    Netzer A; Baruch Leshem A; Veretnik S; Edelstein I; Lampel A
    Small; 2024 Sep; 20(38):e2401665. PubMed ID: 38804888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of enzymatic reactions by chemical composition of peptide biomolecular condensates.
    Harris R; Veretnik S; Dewan S; Baruch Leshem A; Lampel A
    Commun Chem; 2024 Apr; 7(1):90. PubMed ID: 38643237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of liquid-liquid phase separation in bacterial RNA metabolism.
    Nandana V; Schrader JM
    Curr Opin Microbiol; 2021 Jun; 61():91-98. PubMed ID: 33878678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-separated biomolecular condensates for biocatalysis.
    Lim S; Clark DS
    Trends Biotechnol; 2024 Apr; 42(4):496-509. PubMed ID: 37925283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles.
    Song S; Ivanov T; Yuan D; Wang J; da Silva LC; Xie J; Cao S
    Biomacromolecules; 2024 Sep; 25(9):5468-5488. PubMed ID: 39178343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.
    Zhao YG; Zhang H
    Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in design and application of synthetic membraneless organelles.
    Wan L; Zhu Y; Zhang W; Mu W
    Biotechnol Adv; 2024; 73():108355. PubMed ID: 38588907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells.
    Gao Z; Zhang W; Chang R; Zhang S; Yang G; Zhao G
    Front Microbiol; 2021; 12():751880. PubMed ID: 34759902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.
    Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of tyrosinase processing and trafficking by organellar pH and by proteasome activity.
    Watabe H; Valencia JC; Yasumoto K; Kushimoto T; Ando H; Muller J; Vieira WD; Mizoguchi M; Appella E; Hearing VJ
    J Biol Chem; 2004 Feb; 279(9):7971-81. PubMed ID: 14634018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.