These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 37871222)
1. Emergent properties of melanin-inspired peptide/RNA condensates. Netzer A; Katzir I; Baruch Leshem A; Weitman M; Lampel A Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2310569120. PubMed ID: 37871222 [TBL] [Abstract][Full Text] [Related]
2. Biomolecular condensates formed by designer minimalistic peptides. Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825 [TBL] [Abstract][Full Text] [Related]
3. Spatiotemporal Control of Melanin Synthesis in Liquid Droplets. Massarano T; Baruch Leshem A; Weitman M; Lampel A ACS Appl Mater Interfaces; 2022 May; 14(18):20520-20527. PubMed ID: 35451309 [TBL] [Abstract][Full Text] [Related]
4. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925 [TBL] [Abstract][Full Text] [Related]
6. Organization and Function of Non-dynamic Biomolecular Condensates. Woodruff JB; Hyman AA; Boke E Trends Biochem Sci; 2018 Feb; 43(2):81-94. PubMed ID: 29258725 [TBL] [Abstract][Full Text] [Related]
7. Splicing regulation through biomolecular condensates and membraneless organelles. Giudice J; Jiang H Nat Rev Mol Cell Biol; 2024 Sep; 25(9):683-700. PubMed ID: 38773325 [TBL] [Abstract][Full Text] [Related]
8. Controlling compartmentalization by non-membrane-bound organelles. Wheeler RJ; Hyman AA Philos Trans R Soc Lond B Biol Sci; 2018 May; 373(1747):. PubMed ID: 29632271 [TBL] [Abstract][Full Text] [Related]
9. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786 [TBL] [Abstract][Full Text] [Related]
15. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Song S; Ivanov T; Yuan D; Wang J; da Silva LC; Xie J; Cao S Biomacromolecules; 2024 Sep; 25(9):5468-5488. PubMed ID: 39178343 [TBL] [Abstract][Full Text] [Related]
16. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates. Zhao YG; Zhang H Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in design and application of synthetic membraneless organelles. Wan L; Zhu Y; Zhang W; Mu W Biotechnol Adv; 2024; 73():108355. PubMed ID: 38588907 [TBL] [Abstract][Full Text] [Related]
18. Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells. Gao Z; Zhang W; Chang R; Zhang S; Yang G; Zhao G Front Microbiol; 2021; 12():751880. PubMed ID: 34759902 [TBL] [Abstract][Full Text] [Related]
19. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657 [TBL] [Abstract][Full Text] [Related]
20. Regulation of tyrosinase processing and trafficking by organellar pH and by proteasome activity. Watabe H; Valencia JC; Yasumoto K; Kushimoto T; Ando H; Muller J; Vieira WD; Mizoguchi M; Appella E; Hearing VJ J Biol Chem; 2004 Feb; 279(9):7971-81. PubMed ID: 14634018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]