These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37871477)

  • 1. The exodermis: A forgotten but promising apoplastic barrier.
    Liu T; Kreszies T
    J Plant Physiol; 2023 Nov; 290():154118. PubMed ID: 37871477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors.
    Tylová E; Pecková E; Blascheová Z; Soukup A
    Ann Bot; 2017 Jul; 120(1):71-85. PubMed ID: 28605408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots.
    Meyer CJ; Seago JL; Peterson CA
    Ann Bot; 2009 Mar; 103(5):687-702. PubMed ID: 19151041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Groups of multi-cellular passage cells in the root exodermis of
    Ejiri M; Shiono K
    Plant Signal Behav; 2020; 15(2):1719749. PubMed ID: 32013709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The exodermis: a variable apoplastic barrier.
    Hose E; Clarkson DT; Steudle E; Schreiber L; Hartung W
    J Exp Bot; 2001 Dec; 52(365):2245-64. PubMed ID: 11709575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A suberized exodermis is required for tomato drought tolerance.
    Cantó-Pastor A; Kajala K; Shaar-Moshe L; Manzano C; Timilsena P; De Bellis D; Gray S; Holbein J; Yang H; Mohammad S; Nirmal N; Suresh K; Ursache R; Mason GA; Gouran M; West DA; Borowsky AT; Shackel KA; Sinha N; Bailey-Serres J; Geldner N; Li S; Franke RB; Brady SM
    Nat Plants; 2024 Jan; 10(1):118-130. PubMed ID: 38168610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building and breaking of a barrier: Suberin plasticity and function in the endodermis.
    Shukla V; Barberon M
    Curr Opin Plant Biol; 2021 Dec; 64():102153. PubMed ID: 34861611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.
    Li B; Kamiya T; Kalmbach L; Yamagami M; Yamaguchi K; Shigenobu S; Sawa S; Danku JM; Salt DE; Geldner N; Fujiwara T
    Curr Biol; 2017 Mar; 27(5):758-765. PubMed ID: 28238658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial hydraulic conductivity along developing onion roots.
    Barrowclough DE; Peterson CA; Steudle E
    J Exp Bot; 2000 Mar; 51(344):547-57. PubMed ID: 10938811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological roles of Casparian strips and suberin in the transport of water and solutes.
    Calvo-Polanco M; Ribeyre Z; Dauzat M; Reyt G; Hidalgo-Shrestha C; Diehl P; Frenger M; Simonneau T; Muller B; Salt DE; Franke RB; Maurel C; Boursiac Y
    New Phytol; 2021 Dec; 232(6):2295-2307. PubMed ID: 34617285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water uptake by roots: effects of water deficit.
    Steudle E
    J Exp Bot; 2000 Sep; 51(350):1531-42. PubMed ID: 11006304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).
    Shiono K; Ando M; Nishiuchi S; Takahashi H; Watanabe K; Nakamura M; Matsuo Y; Yasuno N; Yamanouchi U; Fujimoto M; Takanashi H; Ranathunge K; Franke RB; Shitan N; Nishizawa NK; Takamure I; Yano M; Tsutsumi N; Schreiber L; Yazaki K; Nakazono M; Kato K
    Plant J; 2014 Oct; 80(1):40-51. PubMed ID: 25041515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots.
    Lehmann H; Stelzer R; Holzamer S; Kunz U; Gierth M
    Planta; 2000 Nov; 211(6):816-22. PubMed ID: 11144266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.
    Kim YX; Ranathunge K; Lee S; Lee Y; Lee D; Sung J
    Front Plant Sci; 2018; 9():193. PubMed ID: 29503659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability of Iris germanica's multiseriate exodermis to water, NaCl, and ethanol.
    Meyer CJ; Peterson CA; Steudle E
    J Exp Bot; 2011 Mar; 62(6):1911-26. PubMed ID: 21131546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis.
    Cohen H; Fedyuk V; Wang C; Wu S; Aharoni A
    Plant J; 2020 May; 102(3):431-447. PubMed ID: 32027440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of
    Ejiri M; Shiono K
    Front Plant Sci; 2019; 10():254. PubMed ID: 30915090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner.
    Namyslov J; Bauriedlová Z; Janoušková J; Soukup A; Tylová E
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32041139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses.
    Shen J; Xu G; Zheng HQ
    Protoplasma; 2015 Jan; 252(1):173-80. PubMed ID: 24965373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endodermal cell-cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana.
    Martinka M; Dolan L; Pernas M; Abe J; Lux A
    Ann Bot; 2012 Jul; 110(2):361-71. PubMed ID: 22645115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.