These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37871477)

  • 21. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.).
    Zimmermann HM; Hartmann K; Schreiber L; Steudle E
    Planta; 2000 Jan; 210(2):302-11. PubMed ID: 10664137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response.
    Foster KJ; Miklavcic SJ
    Front Plant Sci; 2017; 8():1326. PubMed ID: 28804493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suberized transport barriers in plant roots: the effect of silicon.
    Kreszies T; Kreszies V; Ly F; Thangamani PD; Shellakkutti N; Schreiber L
    J Exp Bot; 2020 Dec; 71(21):6799-6806. PubMed ID: 32333766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.
    Kreszies T; Schreiber L; Ranathunge K
    J Plant Physiol; 2018 Aug; 227():75-83. PubMed ID: 29449027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for symplastic involvement in the radial movement of calcium in onion roots.
    Cholewa E; Peterson CA
    Plant Physiol; 2004 Apr; 134(4):1793-802. PubMed ID: 15064381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development, dilation and subdivision of cortical layers of gentian (Gentiana asclepiadea) root.
    Šottníková A; Lux A
    New Phytol; 2003 Oct; 160(1):135-143. PubMed ID: 33873523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes.
    Holbein J; Franke RB; Marhavý P; Fujita S; Górecka M; Sobczak M; Geldner N; Schreiber L; Grundler FMW; Siddique S
    Plant J; 2019 Oct; 100(2):221-236. PubMed ID: 31322300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix).
    Schreiber L; Franke R; Hartmann KD; Ranathunge K; Steudle E
    J Exp Bot; 2005 May; 56(415):1427-36. PubMed ID: 15809280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima.
    Soukup A; Armstrong W; Schreiber L; Franke R; Votrubová O
    New Phytol; 2007; 173(2):264-78. PubMed ID: 17204074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does suberin accumulation in plant roots contribute to waterlogging tolerance?
    Watanabe K; Nishiuchi S; Kulichikhin K; Nakazono M
    Front Plant Sci; 2013; 4():178. PubMed ID: 23785371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.
    Ranathunge K; Kim YX; Wassmann F; Kreszies T; Zeisler V; Schreiber L
    Ann Bot; 2017 Mar; 119(4):629-643. PubMed ID: 28065927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants.
    Wang P; Calvo-Polanco M; Reyt G; Barberon M; Champeyroux C; Santoni V; Maurel C; Franke RB; Ljung K; Novak O; Geldner N; Boursiac Y; Salt DE
    Sci Rep; 2019 Mar; 9(1):4227. PubMed ID: 30862916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Casparian strip development and its potential function in salt tolerance.
    Chen T; Cai X; Wu X; Karahara I; Schreiber L; Lin J
    Plant Signal Behav; 2011 Oct; 6(10):1499-502. PubMed ID: 21904117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis.
    Freundl E; Steudle E; Hartung W
    Planta; 2000 Jan; 210(2):222-31. PubMed ID: 10664128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers.
    Wei X; Yang Z; Han G; Zhao X; Yin S; Yuan F; Wang B
    Plant Signal Behav; 2020 Mar; 15(3):1724465. PubMed ID: 32024414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity.
    Lux A; Sottníková A; Opatrná J; Greger M
    Physiol Plant; 2004 Apr; 120(4):537-545. PubMed ID: 15032815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect and localization of phenanthrene in maize roots.
    Dupuy J; Leglize P; Vincent Q; Zelko I; Mustin C; Ouvrard S; Sterckeman T
    Chemosphere; 2016 Apr; 149():130-6. PubMed ID: 26855216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.).
    Krishnamurthy P; Ranathunge K; Nayak S; Schreiber L; Mathew MK
    J Exp Bot; 2011 Aug; 62(12):4215-28. PubMed ID: 21558150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Casparian strip in rice cultivars.
    Cai X; Chen T; Zhou Q; Xu L; Qu L; Hua X; Lin J
    Plant Signal Behav; 2011 Jan; 6(1):59-65. PubMed ID: 21248477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.